forked from priba/nmp_qc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
320 lines (249 loc) · 12.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Trains a Neural Message Passing Model on various datasets. Methodologi defined in:
Gilmer, J., Schoenholz S.S., Riley, P.F., Vinyals, O., Dahl, G.E. (2017)
Neural Message Passing for Quantum Chemistry.
arXiv preprint arXiv:1704.01212 [cs.LG]
"""
# Torch
import torch
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
import time
import argparse
import os
import numpy as np
# Our Modules
import datasets
from datasets import utils
from models.MPNN import MPNN
from LogMetric import AverageMeter, Logger
__author__ = "Pau Riba, Anjan Dutta"
__email__ = "[email protected], [email protected]"
# Parser check
def restricted_float(x, inter):
x = float(x)
if x < inter[0] or x > inter[1]:
raise argparse.ArgumentTypeError("%r not in range [1e-5, 1e-4]"%(x,))
return x
# Argument parser
parser = argparse.ArgumentParser(description='Neural message passing')
parser.add_argument('--dataset', default='qm9', help='QM9')
parser.add_argument('--datasetPath', default='./data/qm9/dsgdb9nsd/', help='dataset path')
parser.add_argument('--logPath', default='./log/qm9/mpnn/', help='log path')
parser.add_argument('--plotLr', default=False, help='allow plotting the data')
parser.add_argument('--plotPath', default='./plot/qm9/mpnn/', help='plot path')
parser.add_argument('--resume', default='./checkpoint/qm9/mpnn/',
help='path to latest checkpoint')
# Optimization Options
parser.add_argument('--batch-size', type=int, default=100, metavar='N',
help='Input batch size for training (default: 20)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Enables CUDA training')
parser.add_argument('--epochs', type=int, default=360, metavar='N',
help='Number of epochs to train (default: 360)')
parser.add_argument('--lr', type=lambda x: restricted_float(x, [1e-5, 1e-2]), default=1e-3, metavar='LR',
help='Initial learning rate [1e-5, 5e-4] (default: 1e-4)')
parser.add_argument('--lr-decay', type=lambda x: restricted_float(x, [.01, 1]), default=0.6, metavar='LR-DECAY',
help='Learning rate decay factor [.01, 1] (default: 0.6)')
parser.add_argument('--schedule', type=list, default=[0.1, 0.9], metavar='S',
help='Percentage of epochs to start the learning rate decay [0, 1] (default: [0.1, 0.9])')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
# i/o
parser.add_argument('--log-interval', type=int, default=20, metavar='N',
help='How many batches to wait before logging training status')
# Accelerating
parser.add_argument('--prefetch', type=int, default=2, help='Pre-fetching threads.')
best_er1 = 0
def main():
global args, best_er1
args = parser.parse_args()
# Check if CUDA is enabled
args.cuda = not args.no_cuda and torch.cuda.is_available()
# Load data
root = args.datasetPath
print('Prepare files')
files = [f for f in os.listdir(root) if os.path.isfile(os.path.join(root, f))]
idx = np.random.permutation(len(files))
idx = idx.tolist()
valid_ids = [files[i] for i in idx[0:10000]]
test_ids = [files[i] for i in idx[10000:20000]]
train_ids = [files[i] for i in idx[20000:]]
data_train = datasets.Qm9(root, train_ids, edge_transform=utils.qm9_edges, e_representation='raw_distance')
data_valid = datasets.Qm9(root, valid_ids, edge_transform=utils.qm9_edges, e_representation='raw_distance')
data_test = datasets.Qm9(root, test_ids, edge_transform=utils.qm9_edges, e_representation='raw_distance')
# Define model and optimizer
print('Define model')
# Select one graph
g_tuple, l = data_train[0]
g, h_t, e = g_tuple
print('\tStatistics')
stat_dict = datasets.utils.get_graph_stats(data_valid, ['target_mean', 'target_std'])
data_train.set_target_transform(lambda x: datasets.utils.normalize_data(x,stat_dict['target_mean'],
stat_dict['target_std']))
data_valid.set_target_transform(lambda x: datasets.utils.normalize_data(x, stat_dict['target_mean'],
stat_dict['target_std']))
data_test.set_target_transform(lambda x: datasets.utils.normalize_data(x, stat_dict['target_mean'],
stat_dict['target_std']))
# Data Loader
train_loader = torch.utils.data.DataLoader(data_train,
batch_size=args.batch_size, shuffle=True,
collate_fn=datasets.utils.collate_g,
num_workers=args.prefetch, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(data_valid,
batch_size=args.batch_size, collate_fn=datasets.utils.collate_g,
num_workers=args.prefetch, pin_memory=True)
test_loader = torch.utils.data.DataLoader(data_test,
batch_size=args.batch_size, collate_fn=datasets.utils.collate_g,
num_workers=args.prefetch, pin_memory=True)
print('\tCreate model')
in_n = [len(h_t[0]), len(list(e.values())[0])]
hidden_state_size = 73
message_size = 73
n_layers = 3
l_target = len(l)
type ='regression'
model = MPNN(in_n, hidden_state_size, message_size, n_layers, l_target, type=type)
del in_n, hidden_state_size, message_size, n_layers, l_target, type
print('Optimizer')
optimizer = optim.Adam(model.parameters(), lr=args.lr)
criterion = nn.MSELoss()
evaluation = lambda output, target: torch.mean(torch.abs(output - target) / torch.abs(target))
print('Logger')
logger = Logger(args.logPath)
lr_step = (args.lr-args.lr*args.lr_decay)/(args.epochs*args.schedule[1] - args.epochs*args.schedule[0])
# get the best checkpoint if available without training
if args.resume:
checkpoint_dir = args.resume
best_model_file = os.path.join(checkpoint_dir, 'model_best.pth')
if not os.path.isdir(checkpoint_dir):
os.makedirs(checkpoint_dir)
if os.path.isfile(best_model_file):
print("=> loading best model '{}'".format(best_model_file))
checkpoint = torch.load(best_model_file)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_er1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded best model '{}' (epoch {})".format(best_model_file, checkpoint['epoch']))
else:
print("=> no best model found at '{}'".format(best_model_file))
print('Check cuda')
if args.cuda:
print('\t* Cuda')
model = model.cuda()
criterion = criterion.cuda()
# Epoch for loop
for epoch in range(0, args.epochs):
if epoch > args.epochs * args.schedule[0] and epoch < args.epochs * args.schedule[1]:
args.lr -= lr_step
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, evaluation, logger)
# evaluate on test set
er1 = validate(valid_loader, model, criterion, evaluation, logger)
is_best = er1 > best_er1
best_er1 = min(er1, best_er1)
utils.save_checkpoint({'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_er1': best_er1,
'optimizer': optimizer.state_dict(), }, is_best=is_best, directory=args.resume)
# Logger step
logger.log_value('learning_rate', args.lr).step()
# get the best checkpoint and test it with test set
if args.resume:
checkpoint_dir = args.resume
best_model_file = os.path.join(checkpoint_dir, 'model_best.pth')
if not os.path.isdir(checkpoint_dir):
os.makedirs(checkpoint_dir)
if os.path.isfile(best_model_file):
print("=> loading best model '{}'".format(best_model_file))
checkpoint = torch.load(best_model_file)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_er1']
model.load_state_dict(checkpoint['state_dict'])
if args.cuda:
model.cuda()
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded best model '{}' (epoch {})".format(best_model_file, checkpoint['epoch']))
else:
print("=> no best model found at '{}'".format(best_model_file))
# For testing
validate(test_loader, model, criterion, evaluation)
def train(train_loader, model, criterion, optimizer, epoch, evaluation, logger):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
error_ratio = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (g, h, e, target) in enumerate(train_loader):
# Prepare input data
if args.cuda:
g, h, e, target = g.cuda(), h.cuda(), e.cuda(), target.cuda()
g, h, e, target = Variable(g), Variable(h), Variable(e), Variable(target)
# Measure data loading time
data_time.update(time.time() - end)
optimizer.zero_grad()
# Compute output
output = model(g, h, e)
train_loss = criterion(output, target)
# Logs
losses.update(train_loss.data[0], g.size(0))
error_ratio.update(evaluation(output, target).data[0], g.size(0))
# compute gradient and do SGD step
train_loss.backward()
optimizer.step()
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.log_interval == 0 and i > 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Error Ratio {err.val:.4f} ({err.avg:.4f})'
.format(epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, err=error_ratio))
logger.log_value('train_epoch_loss', losses.avg)
logger.log_value('train_epoch_error_ratio', error_ratio.avg)
print('Epoch: [{0}] Avg Error Ratio {err.avg:.3f}; Average Loss {loss.avg:.3f}; Avg Time x Batch {b_time.avg:.3f}'
.format(epoch, err=error_ratio, loss=losses, b_time=batch_time))
def validate(val_loader, model, criterion, evaluation, logger=None):
batch_time = AverageMeter()
losses = AverageMeter()
error_ratio = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (g, h, e, target) in enumerate(val_loader):
# Prepare input data
if args.cuda:
g, h, e, target = g.cuda(), h.cuda(), e.cuda(), target.cuda()
g, h, e, target = Variable(g), Variable(h), Variable(e), Variable(target)
# Compute output
output = model(g, h, e)
# Logs
losses.update(criterion(output, target).data[0], g.size(0))
error_ratio.update(evaluation(output, target).data[0], g.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.log_interval == 0 and i > 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Error Ratio {err.val:.4f} ({err.avg:.4f})'
.format(i, len(val_loader), batch_time=batch_time,
loss=losses, err=error_ratio))
print(' * Average Error Ratio {err.avg:.3f}; Average Loss {loss.avg:.3f}'
.format(err=error_ratio, loss=losses))
if logger is not None:
logger.log_value('test_epoch_loss', losses.avg)
logger.log_value('test_epoch_error_ratio', error_ratio.avg)
return error_ratio.avg
if __name__ == '__main__':
main()