forked from skylinemarketing/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PageViewRegionExample.java
245 lines (228 loc) · 12.4 KB
/
PageViewRegionExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.kafka.serializers.AbstractKafkaAvroSerDeConfig;
import io.confluent.kafka.streams.serdes.avro.GenericAvroSerde;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.kstream.TimeWindows;
import org.apache.kafka.streams.kstream.ValueJoiner;
import org.apache.kafka.streams.kstream.ValueMapper;
import org.apache.kafka.streams.kstream.Windowed;
import java.io.InputStream;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
/**
* Demonstrates how to perform a join between a KStream and a KTable, i.e. an example of a stateful
* computation, using the generic Avro binding for serdes in Kafka Streams. Same as
* PageViewRegionLambdaExample but does not use lambda expressions and thus works on Java 7+.
* <p>
* In this example, we join a stream of page views (aka clickstreams) that reads from a topic named
* "PageViews" with a user profile table that reads from a topic named "UserProfiles" to compute the
* number of page views per user region.
* <p>
* Note: The generic Avro binding is used for serialization/deserialization. This means the
* appropriate Avro schema files must be provided for each of the "intermediate" Avro classes, i.e.
* whenever new types of Avro objects (in the form of GenericRecord) are being passed between
* processing steps.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper, Kafka, and Confluent Schema Registry. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p>
* 2) Create the input/intermediate/output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic PageViews \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic UserProfiles \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic PageViewsByRegion \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be
* `bin/kafka-topics.sh ...`.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-5.0.0-SNAPSHOT-standalone.jar io.confluent.examples.streams.PageViewRegionLambdaExample
* }
* </pre>
* 4) Write some input data to the source topics (e.g. via {@link PageViewRegionExampleDriver}). The
* already running example application (step 3) will automatically process this input data and write
* the results to the output topic.
* <pre>
* {@code
* # Here: Write input data using the example driver. Once the driver has stopped generating data,
* # you can terminate it via `Ctrl-C`.
* $ java -cp target/kafka-streams-examples-5.0.0-SNAPSHOT-standalone.jar io.confluent.examples.streams.PageViewRegionExampleDriver
* }
* </pre>
* 5) Inspect the resulting data in the output topic, e.g. via {@code kafka-console-consumer}.
* <pre>
* {@code
* $ bin/kafka-console-consumer --topic PageViewsByRegion --from-beginning \
* --bootstrap-server localhost:9092 \
* --property print.key=true \
* --property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
* }
* </pre>
* You should see output data similar to:
* <pre>
* {@code
* [africa@1466515140000] 2
* [asia@1466514900000] 3
* ...
* }
* </pre>
* Here, the output format is "[REGION@WINDOW_START_TIME] COUNT".
* <p>
* 6) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Confluent Schema Registry ({@code Ctrl-C}), then stop the Kafka broker ({@code Ctrl-C}), and
* only then stop the ZooKeeper instance ({@code Ctrl-C}).
*/
public class PageViewRegionExample {
public static void main(final String[] args) throws Exception {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
final String schemaRegistryUrl = args.length > 1 ? args[1] : "http://localhost:8081";
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "pageview-region-example");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "pageview-region-example-client");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
// Where to find the Confluent schema registry instance(s)
streamsConfiguration.put(AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG, schemaRegistryUrl);
// Specify default (de)serializers for record keys and for record values.
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, GenericAvroSerde.class);
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Records should be flushed every 10 seconds. This is less than the default
// in order to keep this example interactive.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10 * 1000);
final Serde<String> stringSerde = Serdes.String();
final Serde<Long> longSerde = Serdes.Long();
final StreamsBuilder builder = new StreamsBuilder();
// Create a stream of page view events from the PageViews topic, where the key of
// a record is assumed to be null and the value an Avro GenericRecord
// that represents the full details of the page view event. See `pageview.avsc` under
// `src/main/avro/` for the corresponding Avro schema.
final KStream<String, GenericRecord> views = builder.stream("PageViews");
// Create a keyed stream of page view events from the PageViews stream,
// by extracting the user id (String) from the Avro value
final KStream<String, GenericRecord> viewsByUser = views.map(new KeyValueMapper<String, GenericRecord, KeyValue<String, GenericRecord>>() {
@Override
public KeyValue<String, GenericRecord> apply(final String dummy, final GenericRecord record) {
return new KeyValue<>(record.get("user").toString(), record);
}
});
// Create a changelog stream for user profiles from the UserProfiles topic,
// where the key of a record is assumed to be the user id (String) and its value
// an Avro GenericRecord. See `userprofile.avsc` under `src/main/avro/` for the
// corresponding Avro schema.
final KTable<String, GenericRecord> userProfiles = builder.table("UserProfiles");
// Create a changelog stream as a projection of the value to the region attribute only
final KTable<String, String> userRegions = userProfiles.mapValues(new ValueMapper<GenericRecord, String>() {
@Override
public String apply(final GenericRecord record) {
return record.get("region").toString();
}
});
// We must specify the Avro schemas for all intermediate (Avro) classes, if any.
// In this example, we want to create an intermediate GenericRecord to hold the view region
// (see below).
final InputStream
pageViewRegionSchema =
PageViewRegionLambdaExample.class.getClassLoader()
.getResourceAsStream("avro/io/confluent/examples/streams/pageviewregion.avsc");
final Schema schema = new Schema.Parser().parse(pageViewRegionSchema);
final KTable<Windowed<String>, Long> viewsByRegion = viewsByUser
.leftJoin(userRegions, new ValueJoiner<GenericRecord, String, GenericRecord>() {
@Override
public GenericRecord apply(final GenericRecord view, final String region) {
final GenericRecord viewRegion = new GenericData.Record(schema);
viewRegion.put("user", view.get("user"));
viewRegion.put("page", view.get("page"));
viewRegion.put("region", region);
return viewRegion;
}
})
.map(new KeyValueMapper<String, GenericRecord, KeyValue<String, GenericRecord>>() {
@Override
public KeyValue<String, GenericRecord> apply(final String user, final GenericRecord viewRegion) {
return new KeyValue<>(viewRegion.get("region").toString(), viewRegion);
}
})
// count views by user, using hopping windows of size 5 minutes that advance every 1 minute
.groupByKey() // no need to specify explicit serdes because the resulting key and value types match our default serde settings
.windowedBy(TimeWindows.of(TimeUnit.MINUTES.toMillis(5)).advanceBy(TimeUnit.MINUTES.toMillis(1)))
.count();
// Note: The following operations would NOT be needed for the actual pageview-by-region
// computation, which would normally stop at `count` above. We use the operations
// below only to "massage" the output data so it is easier to inspect on the console via
// kafka-console-consumer.
final KStream<String, Long> viewsByRegionForConsole = viewsByRegion
// get rid of windows (and the underlying KTable) by transforming the KTable to a KStream
// and by also converting the record key from type `Windowed<String>` (which
// kafka-console-consumer can't print to console out-of-the-box) to `String`
.toStream(new KeyValueMapper<Windowed<String>, Long, String>() {
@Override
public String apply(final Windowed<String> windowedRegion, final Long count) {
return windowedRegion.toString();
}
});
// write to the result topic
viewsByRegionForConsole.to("PageViewsByRegion", Produced.with(stringSerde, longSerde));
final KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// http://docs.confluent.io/current/streams/developer-guide.html#application-reset-tool).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
@Override
public void run() {
streams.close();
}
}));
}
}