-
Notifications
You must be signed in to change notification settings - Fork 120
/
PDE_FIND.py
706 lines (560 loc) · 25.4 KB
/
PDE_FIND.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
import numpy as np
from numpy import linalg as LA
import scipy.sparse as sparse
from scipy.sparse import csc_matrix
from scipy.sparse import dia_matrix
import itertools
import operator
"""
A few functions used in PDE-FIND
Samuel Rudy. 2016
"""
##################################################################################
##################################################################################
#
# Functions for taking derivatives.
# When in doubt / nice data ===> finite differences
# \ noisy data ===> polynomials
#
##################################################################################
##################################################################################
def TikhonovDiff(f, dx, lam, d = 1):
"""
Tikhonov differentiation.
return argmin_g \|Ag-f\|_2^2 + lam*\|Dg\|_2^2
where A is trapezoidal integration and D is finite differences for first dervative
It looks like it will work well and does for the ODE case but
tends to introduce too much bias to work well for PDEs. If the data is noisy, try using
polynomials instead.
"""
# Initialize a few things
n = len(f)
f = np.matrix(f - f[0]).reshape((n,1))
# Get a trapezoidal approximation to an integral
A = np.zeros((n,n))
for i in range(1, n):
A[i,i] = dx/2
A[i,0] = dx/2
for j in range(1,i): A[i,j] = dx
e = np.ones(n-1)
D = sparse.diags([e, -e], [1, 0], shape=(n-1, n)).todense() / dx
# Invert to find derivative
g = np.squeeze(np.asarray(np.linalg.lstsq(A.T.dot(A) + lam*D.T.dot(D),A.T.dot(f),rcond=None)[0]))
if d == 1: return g
# If looking for a higher order derivative, this one should be smooth so now we can use finite differences
else: return FiniteDiff(g, dx, d-1)
def FiniteDiff(u, dx, d):
"""
Takes dth derivative data using 2nd order finite difference method (up to d=3)
Works but with poor accuracy for d > 3
Input:
u = data to be differentiated
dx = Grid spacing. Assumes uniform spacing
"""
n = u.size
ux = np.zeros(n, dtype=np.complex64)
if d == 1:
for i in range(1,n-1):
ux[i] = (u[i+1]-u[i-1]) / (2*dx)
ux[0] = (-3.0/2*u[0] + 2*u[1] - u[2]/2) / dx
ux[n-1] = (3.0/2*u[n-1] - 2*u[n-2] + u[n-3]/2) / dx
return ux
if d == 2:
for i in range(1,n-1):
ux[i] = (u[i+1]-2*u[i]+u[i-1]) / dx**2
ux[0] = (2*u[0] - 5*u[1] + 4*u[2] - u[3]) / dx**2
ux[n-1] = (2*u[n-1] - 5*u[n-2] + 4*u[n-3] - u[n-4]) / dx**2
return ux
if d == 3:
for i in range(2,n-2):
ux[i] = (u[i+2]/2-u[i+1]+u[i-1]-u[i-2]/2) / dx**3
ux[0] = (-2.5*u[0]+9*u[1]-12*u[2]+7*u[3]-1.5*u[4]) / dx**3
ux[1] = (-2.5*u[1]+9*u[2]-12*u[3]+7*u[4]-1.5*u[5]) / dx**3
ux[n-1] = (2.5*u[n-1]-9*u[n-2]+12*u[n-3]-7*u[n-4]+1.5*u[n-5]) / dx**3
ux[n-2] = (2.5*u[n-2]-9*u[n-3]+12*u[n-4]-7*u[n-5]+1.5*u[n-6]) / dx**3
return ux
if d > 3:
return FiniteDiff(FiniteDiff(u,dx,3), dx, d-3)
def ConvSmoother(x, p, sigma):
"""
Smoother for noisy data
Inpute = x, p, sigma
x = one dimensional series to be smoothed
p = width of smoother
sigma = standard deviation of gaussian smoothing kernel
"""
n = len(x)
y = np.zeros(n, dtype=np.complex64)
g = np.exp(-np.power(np.linspace(-p,p,2*p),2)/(2.0*sigma**2))
for i in range(n):
a = max([i-p,0])
b = min([i+p,n])
c = max([0, p-i])
d = min([2*p,p+n-i])
y[i] = np.sum(np.multiply(x[a:b], g[c:d]))/np.sum(g[c:d])
return y
def PolyDiff(u, x, deg = 3, diff = 1, width = 5):
"""
u = values of some function
x = x-coordinates where values are known
deg = degree of polynomial to use
diff = maximum order derivative we want
width = width of window to fit to polynomial
This throws out the data close to the edges since the polynomial derivative only works
well when we're looking at the middle of the points fit.
"""
u = u.flatten()
x = x.flatten()
n = len(x)
du = np.zeros((n - 2*width,diff))
# Take the derivatives in the center of the domain
for j in range(width, n-width):
# Note code originally used an even number of points here.
# This is an oversight in the original code fixed in 2022.
points = np.arange(j - width, j + width + 1)
# Fit to a polynomial
poly = np.polynomial.chebyshev.Chebyshev.fit(x[points],u[points],deg)
# Take derivatives
for d in range(1,diff+1):
du[j-width, d-1] = poly.deriv(m=d)(x[j])
return du
def PolyDiffPoint(u, x, deg = 3, diff = 1, index = None):
"""
Same as above but now just looking at a single point
u = values of some function
x = x-coordinates where values are known
deg = degree of polynomial to use
diff = maximum order derivative we want
"""
n = len(x)
if index == None: index = (n-1)//2
# Fit to a polynomial
poly = np.polynomial.chebyshev.Chebyshev.fit(x,u,deg)
# Take derivatives
derivatives = []
for d in range(1,diff+1):
derivatives.append(poly.deriv(m=d)(x[index]))
return derivatives
##################################################################################
##################################################################################
#
# Functions specific to PDE-FIND
#
##################################################################################
##################################################################################
def build_Theta(data, derivatives, derivatives_description, P, data_description = None):
"""
builds a matrix with columns representing polynoimials up to degree P of all variables
This is used when we subsample and take all the derivatives point by point or if there is an
extra input (Q in the paper) to put in.
input:
data: column 0 is U, and columns 1:end are Q
derivatives: a bunch of derivatives of U and maybe Q, should start with a column of ones
derivatives_description: description of what derivatives have been passed in
P: max power of polynomial function of U to be included in Theta
returns:
Theta = Theta(U,Q)
descr = description of what all the columns in Theta are
"""
n,d = data.shape
m, d2 = derivatives.shape
if n != m: raise Exception('dimension error')
if data_description is not None:
if len(data_description) != d: raise Exception('data descrption error')
# Create a list of all polynomials in d variables up to degree P
rhs_functions = {}
f = lambda x, y : np.prod(np.power(list(x), list(y)))
powers = []
for p in range(1,P+1):
size = d + p - 1
for indices in itertools.combinations(range(size), d-1):
starts = [0] + [index+1 for index in indices]
stops = indices + (size,)
powers.append(tuple(map(operator.sub, stops, starts)))
for power in powers: rhs_functions[power] = [lambda x, y = power: f(x,y), power]
# First column of Theta is just ones.
Theta = np.ones((n,1), dtype=np.complex64)
descr = ['']
# Add the derivaitves onto Theta
for D in range(1,derivatives.shape[1]):
Theta = np.hstack([Theta, derivatives[:,D].reshape(n,1)])
descr.append(derivatives_description[D])
# Add on derivatives times polynomials
for D in range(derivatives.shape[1]):
for k in rhs_functions.keys():
func = rhs_functions[k][0]
new_column = np.zeros((n,1), dtype=np.complex64)
for i in range(n):
new_column[i] = func(data[i,:])*derivatives[i,D]
Theta = np.hstack([Theta, new_column])
if data_description is None: descr.append(str(rhs_functions[k][1]) + derivatives_description[D])
else:
function_description = ''
for j in range(d):
if rhs_functions[k][1][j] != 0:
if rhs_functions[k][1][j] == 1:
function_description = function_description + data_description[j]
else:
function_description = function_description + data_description[j] + '^' + str(rhs_functions[k][1][j])
descr.append(function_description + derivatives_description[D])
return Theta, descr
def build_linear_system(u, dt, dx, D = 3, P = 3,time_diff = 'poly',space_diff = 'poly',lam_t = None,lam_x = None, width_x = None,width_t = None, deg_x = 5,deg_t = None,sigma = 2):
"""
Constructs a large linear system to use in later regression for finding PDE.
This function works when we are not subsampling the data or adding in any forcing.
Input:
Required:
u = data to be fit to a pde
dt = temporal grid spacing
dx = spatial grid spacing
Optional:
D = max derivative to include in rhs (default = 3)
P = max power of u to include in rhs (default = 3)
time_diff = method for taking time derivative
options = 'poly', 'FD', 'FDconv','TV'
'poly' (default) = interpolation with polynomial
'FD' = standard finite differences
'FDconv' = finite differences with convolutional smoothing
before and after along x-axis at each timestep
'Tik' = Tikhonov (takes very long time)
space_diff = same as time_diff with added option, 'Fourier' = differentiation via FFT
lam_t = penalization for L2 norm of second time derivative
only applies if time_diff = 'TV'
default = 1.0/(number of timesteps)
lam_x = penalization for L2 norm of (n+1)st spatial derivative
default = 1.0/(number of gridpoints)
width_x = number of points to use in polynomial interpolation for x derivatives
or width of convolutional smoother in x direction if using FDconv
width_t = number of points to use in polynomial interpolation for t derivatives
deg_x = degree of polynomial to differentiate x
deg_t = degree of polynomial to differentiate t
sigma = standard deviation of gaussian smoother
only applies if time_diff = 'FDconv'
default = 2
Output:
ut = column vector of length u.size
R = matrix with ((D+1)*(P+1)) of column, each as large as ut
rhs_description = description of what each column in R is
"""
n, m = u.shape
if width_x == None: width_x = n//10
if width_t == None: width_t = m//10
if deg_t == None: deg_t = deg_x
# If we're using polynomials to take derviatives, then we toss the data around the edges.
if time_diff == 'poly':
m2 = m-2*width_t
offset_t = width_t
else:
m2 = m
offset_t = 0
if space_diff == 'poly':
n2 = n-2*width_x
offset_x = width_x
else:
n2 = n
offset_x = 0
if lam_t == None: lam_t = 1.0/m
if lam_x == None: lam_x = 1.0/n
########################
# First take the time derivaitve for the left hand side of the equation
########################
ut = np.zeros((n2,m2), dtype=np.complex64)
if time_diff == 'FDconv':
Usmooth = np.zeros((n,m), dtype=np.complex64)
# Smooth across x cross-sections
for j in range(m):
Usmooth[:,j] = ConvSmoother(u[:,j],width_t,sigma)
# Now take finite differences
for i in range(n2):
ut[i,:] = FiniteDiff(Usmooth[i + offset_x,:],dt,1)
elif time_diff == 'poly':
T= np.linspace(0,(m-1)*dt,m)
for i in range(n2):
ut[i,:] = PolyDiff(u[i+offset_x,:],T,diff=1,width=width_t,deg=deg_t)[:,0]
elif time_diff == 'Tik':
for i in range(n2):
ut[i,:] = TikhonovDiff(u[i + offset_x,:], dt, lam_t)
else:
for i in range(n2):
ut[i,:] = FiniteDiff(u[i + offset_x,:],dt,1)
ut = np.reshape(ut, (n2*m2,1), order='F')
########################
# Now form the rhs one column at a time, and record what each one is
########################
u2 = u[offset_x:n-offset_x,offset_t:m-offset_t]
Theta = np.zeros((n2*m2, (D+1)*(P+1)), dtype=np.complex64)
ux = np.zeros((n2,m2), dtype=np.complex64)
rhs_description = ['' for i in range((D+1)*(P+1))]
if space_diff == 'poly':
Du = {}
for i in range(m2):
Du[i] = PolyDiff(u[:,i+offset_t],np.linspace(0,(n-1)*dx,n),diff=D,width=width_x,deg=deg_x)
if space_diff == 'Fourier': ik = 1j*np.fft.fftfreq(n)*n
for d in range(D+1):
if d > 0:
for i in range(m2):
if space_diff == 'Tik': ux[:,i] = TikhonovDiff(u[:,i+offset_t], dx, lam_x, d=d)
elif space_diff == 'FDconv':
Usmooth = ConvSmoother(u[:,i+offset_t],width_x,sigma)
ux[:,i] = FiniteDiff(Usmooth,dx,d)
elif space_diff == 'FD': ux[:,i] = FiniteDiff(u[:,i+offset_t],dx,d)
elif space_diff == 'poly': ux[:,i] = Du[i][:,d-1]
elif space_diff == 'Fourier': ux[:,i] = np.fft.ifft(ik**d*np.fft.fft(ux[:,i]))
else: ux = np.ones((n2,m2), dtype=np.complex64)
for p in range(P+1):
Theta[:, d*(P+1)+p] = np.reshape(np.multiply(ux, np.power(u2,p)), (n2*m2), order='F')
if p == 1: rhs_description[d*(P+1)+p] = rhs_description[d*(P+1)+p]+'u'
elif p>1: rhs_description[d*(P+1)+p] = rhs_description[d*(P+1)+p]+'u^' + str(p)
if d > 0: rhs_description[d*(P+1)+p] = rhs_description[d*(P+1)+p]+\
'u_{' + ''.join(['x' for _ in range(d)]) + '}'
return ut, Theta, rhs_description
def print_pde(w, rhs_description, ut = 'u_t'):
pde = ut + ' = '
first = True
for i in range(len(w)):
if w[i] != 0:
if not first:
pde = pde + ' + '
pde = pde + "(%05f %+05fi)" % (w[i].real, w[i].imag) + rhs_description[i] + "\n "
first = False
print(pde)
##################################################################################
##################################################################################
#
# Functions for sparse regression.
#
##################################################################################
##################################################################################
def TrainSTRidge(R, Ut, lam, d_tol, maxit = 25, STR_iters = 10, l0_penalty = None, normalize = 2, split = 0.8, print_best_tol = False):
"""
This function trains a predictor using STRidge.
It runs over different values of tolerance and trains predictors on a training set, then evaluates them
using a loss function on a holdout set.
Please note published article has typo. Loss function used here for model selection evaluates fidelity using 2-norm,
not squared 2-norm.
"""
# Split data into 80% training and 20% test, then search for the best tolderance.
np.random.seed(0) # for consistancy
n,_ = R.shape
train = np.random.choice(n, int(n*split), replace = False)
test = [i for i in np.arange(n) if i not in train]
TrainR = R[train,:]
TestR = R[test,:]
TrainY = Ut[train,:]
TestY = Ut[test,:]
D = TrainR.shape[1]
# Set up the initial tolerance and l0 penalty
d_tol = float(d_tol)
tol = d_tol
if l0_penalty == None: l0_penalty = 0.001*np.linalg.cond(R)
# Get the standard least squares estimator
w = np.zeros((D,1))
w_best = np.linalg.lstsq(TrainR, TrainY,rcond=None)[0]
err_best = np.linalg.norm(TestY - TestR.dot(w_best), 2) + l0_penalty*np.count_nonzero(w_best)
tol_best = 0
# Now increase tolerance until test performance decreases
for iter in range(maxit):
# Get a set of coefficients and error
w = STRidge(TrainR,TrainY,lam,STR_iters,tol,normalize = normalize)
err = np.linalg.norm(TestY - TestR.dot(w), 2) + l0_penalty*np.count_nonzero(w)
# Has the accuracy improved?
if err <= err_best:
err_best = err
w_best = w
tol_best = tol
tol = tol + d_tol
else:
tol = max([0,tol - 2*d_tol])
d_tol = 2*d_tol / (maxit - iter)
tol = tol + d_tol
if print_best_tol: print("Optimal tolerance:", tol_best)
return w_best
def Lasso(X0, Y, lam, w = np.array([0]), maxit = 100, normalize = 2):
"""
Uses accelerated proximal gradient (FISTA) to solve Lasso
argmin (1/2)*||Xw-Y||_2^2 + lam||w||_1
"""
# Obtain size of X
n,d = X0.shape
X = np.zeros((n,d), dtype=np.complex64)
Y = Y.reshape(n,1)
# Create w if none is given
if w.size != d:
w = np.zeros((d,1), dtype=np.complex64)
w_old = np.zeros((d,1), dtype=np.complex64)
# Initialize a few other parameters
converge = 0
objective = np.zeros((maxit,1))
# First normalize data
if normalize != 0:
Mreg = np.zeros((d,1))
for i in range(0,d):
Mreg[i] = 1.0/(np.linalg.norm(X0[:,i],normalize))
X[:,i] = Mreg[i]*X0[:,i]
else: X = X0
# Lipschitz constant of gradient of smooth part of loss function
L = np.linalg.norm(X.T.dot(X),2)
# Now loop until converged or max iterations
for iters in range(0, maxit):
# Update w
z = w + iters/float(iters+1)*(w - w_old)
w_old = w
z = z - X.T.dot(X.dot(z)-Y)/L
for j in range(d): w[j] = np.multiply(np.sign(z[j]), np.max([abs(z[j])-lam/L,0]))
# Could put in some sort of break condition based on convergence here.
# Now that we have the sparsity pattern, used least squares.
biginds = np.where(w != 0)[0]
if biginds != []: w[biginds] = np.linalg.lstsq(X[:, biginds],Y,rcond=None)[0]
# Finally, reverse the regularization so as to be able to use with raw data
if normalize != 0: return np.multiply(Mreg,w)
else: return w
def ElasticNet(X0, Y, lam1, lam2, w = np.array([0]), maxit = 100, normalize = 2):
"""
Uses accelerated proximal gradient (FISTA) to solve elastic net
argmin (1/2)*||Xw-Y||_2^2 + lam_1||w||_1 + (1/2)*lam_2||w||_2^2
"""
# Obtain size of X
n,d = X0.shape
X = np.zeros((n,d), dtype=np.complex64)
Y = Y.reshape(n,1)
# Create w if none is given
if w.size != d:
w = np.zeros((d,1), dtype=np.complex64)
w_old = np.zeros((d,1), dtype=np.complex64)
# Initialize a few other parameters
converge = 0
objective = np.zeros((maxit,1))
# First normalize data
if normalize != 0:
Mreg = np.zeros((d,1))
for i in range(0,d):
Mreg[i] = 1.0/(np.linalg.norm(X0[:,i],normalize))
X[:,i] = Mreg[i]*X0[:,i]
else: X = X0
# Lipschitz constant of gradient of smooth part of loss function
L = np.linalg.norm(X.T.dot(X),2) + lam2
# Now loop until converged or max iterations
for iters in range(0, maxit):
# Update w
z = w + iters/float(iters+1)*(w - w_old)
w_old = w
z = z - (lam2*z + X.T.dot(X.dot(z)-Y))/L
for j in range(d): w[j] = np.multiply(np.sign(z[j]), np.max([abs(z[j])-lam1/L,0]))
# Could put in some sort of break condition based on convergence here.
# Now that we have the sparsity pattern, used least squares.
biginds = np.where(w != 0)[0]
if biginds != []: w[biginds] = np.linalg.lstsq(X[:, biginds],Y,rcond=None)[0]
# Finally, reverse the regularization so as to be able to use with raw data
if normalize != 0: return np.multiply(Mreg,w)
else: return w
def STRidge(X0, y, lam, maxit, tol, normalize = 2, print_results = False):
"""
Sequential Threshold Ridge Regression algorithm for finding (hopefully) sparse
approximation to X^{-1}y. The idea is that this may do better with correlated observables.
This assumes y is only one column
"""
n,d = X0.shape
X = np.zeros((n,d), dtype=np.complex64)
# First normalize data
if normalize != 0:
Mreg = np.zeros((d,1))
for i in range(0,d):
Mreg[i] = 1.0/(np.linalg.norm(X0[:,i],normalize))
X[:,i] = Mreg[i]*X0[:,i]
else: X = X0
# Get the standard ridge esitmate
if lam != 0: w = np.linalg.lstsq(X.T.dot(X) + lam*np.eye(d),X.T.dot(y),rcond=None)[0]
else: w = np.linalg.lstsq(X,y,rcond=None)[0]
num_relevant = d
biginds = np.where( abs(w) > tol)[0]
# Threshold and continue
for j in range(maxit):
# Figure out which items to cut out
smallinds = np.where( abs(w) < tol)[0]
new_biginds = [i for i in range(d) if i not in smallinds]
# If nothing changes then stop
if num_relevant == len(new_biginds): break
else: num_relevant = len(new_biginds)
# Also make sure we didn't just lose all the coefficients
if len(new_biginds) == 0:
if j == 0:
#if print_results: print "Tolerance too high - all coefficients set below tolerance"
return w
else: break
biginds = new_biginds
# Otherwise get a new guess
w[smallinds] = 0
if lam != 0: w[biginds] = np.linalg.lstsq(X[:, biginds].T.dot(X[:, biginds]) + lam*np.eye(len(biginds)),X[:, biginds].T.dot(y),rcond=None)[0]
else: w[biginds] = np.linalg.lstsq(X[:, biginds],y,rcond=None)[0]
# Now that we have the sparsity pattern, use standard least squares to get w
if biginds != []: w[biginds] = np.linalg.lstsq(X[:, biginds],y,rcond=None)[0]
if normalize != 0: return np.multiply(Mreg,w)
else: return w
def FoBaGreedy(X, y, epsilon = 0.1, maxit_f = 100, maxit_b = 5, backwards_freq = 5, relearn_f=True, relearn_b=True):
"""
Forward-Backward greedy algorithm for sparse regression.
See Zhang, Tom. 'Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models', NIPS, 2008
The original version of this code that was uploaded github was contained errors. This version has been corrected and
also includes an variation of FoBa used in Thaler et al. 'Sparse identification of truncation errors,' JCP, 2019,where
we have additionally used relearning on the backwards step. This later implementation (currently set as the default
with relearn_f=relearn_b=True) relearns non-zero terms of w, rather than only fitting the residual, as was done in Zhang.
It is slower, more robust, but still in some cases underperforms STRidge.
"""
n,d = X.shape
F = {}
F[0] = set()
w = {}
w[0] = np.zeros((d,1))
k = 0
delta = {}
for forward_iter in range(maxit_f):
k = k+1
# forward step
zero_coeffs = np.where(w[k-1] == 0)[0]
if len(zero_coeffs)==0: return w[k-1]
err_after_addition = []
residual = y - X.dot(w[k-1])
for i in zero_coeffs:
if relearn_f:
F_trial = F[k-1].union({i})
w_added = np.zeros((d,1))
w_added[list(F_trial)] = np.linalg.lstsq(X[:, list(F_trial)], y, rcond=None)[0]
else:
# Per figure 3 line 8 in paper, do not retrain old variables.
# Only look for optimal alpha, which is solving for new w iff X is unitary
alpha = X[:,i].T.dot(residual)/np.linalg.norm(X[:,i])**2
w_added = np.copy(w[k-1])
w_added[i] = alpha
err_after_addition.append(np.linalg.norm(X.dot(w_added)-y))
i = zero_coeffs[np.argmin(err_after_addition)]
F[k] = F[k-1].union({i})
w[k] = np.zeros((d,1), dtype=np.complex64)
w[k][list(F[k])] = np.linalg.lstsq(X[:, list(F[k])], y,rcond=None)[0]
# check for break condition
delta[k] = np.linalg.norm(X.dot(w[k-1]) - y) - np.linalg.norm(X.dot(w[k]) - y)
if delta[k] < epsilon: return w[k-1]
# backward step, do once every few forward steps
if forward_iter % backwards_freq == 0 and forward_iter > 0:
for backward_iter in range(maxit_b):
non_zeros = np.where(w[k] != 0)[0]
err_after_simplification = []
for j in non_zeros:
if relearn_b:
F_trial = F[k].difference({j})
w_simple = np.zeros((d,1))
w_simple[list(F_trial)] = np.linalg.lstsq(X[:, list(F_trial)], y, rcond=None)[0]
else:
w_simple = np.copy(w[k])
w_simple[j] = 0
err_after_simplification.append(np.linalg.norm(X.dot(w_simple) - y))
j = np.argmin(err_after_simplification)
w_simple = np.copy(w[k])
w_simple[non_zeros[j]] = 0
# check for break condition on backward step
delta_p = err_after_simplification[j] - np.linalg.norm(X.dot(w[k]) - y)
if delta_p > 0.5*delta[k]: break
k = k-1;
F[k] = F[k+1].difference({j})
w[k] = np.zeros((d,1))
w[k][list(F[k])] = np.linalg.lstsq(X[:, list(F[k])], y,rcond=None)[0]
return w[k]