-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
178 lines (148 loc) · 7.01 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import transformers
import torch
import torch.nn.functional as F
from torch import nn
from torch.cuda.amp import custom_fwd, custom_bwd
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
from tqdm.auto import tqdm
# 8bit adaptions
class FrozenBNBLinear(nn.Module):
def __init__(self, weight, absmax, code, bias=None):
assert isinstance(bias, nn.Parameter) or bias is None
super().__init__()
self.out_features, self.in_features = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
self.bias = bias
def forward(self, input):
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
if self.adapter:
output += self.adapter(input)
return output
@classmethod
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
return cls(weights_int8, *state, linear.bias)
def __repr__(self):
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
class DequantizeAndLinear(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
ctx.save_for_backward(input, weights_quantized, absmax, code)
ctx._has_bias = bias is not None
return F.linear(input, weights_deq, bias)
@staticmethod
@custom_bwd
def backward(ctx, grad_output: torch.Tensor):
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
input, weights_quantized, absmax, code = ctx.saved_tensors
# grad_output: [*batch, out_features]
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
grad_input = grad_output @ weights_deq
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
return grad_input, None, None, None, grad_bias
class FrozenBNBEmbedding(nn.Module):
def __init__(self, weight, absmax, code):
super().__init__()
self.num_embeddings, self.embedding_dim = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
def forward(self, input, **kwargs):
with torch.no_grad():
# note: both quantuized weights and input indices are *not* differentiable
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
output = F.embedding(input, weight_deq, **kwargs)
if self.adapter:
output += self.adapter(input)
return output
@classmethod
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
return cls(weights_int8, *state)
def __repr__(self):
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
assert chunk_size % 4096 == 0
code = None
chunks = []
absmaxes = []
flat_tensor = matrix.view(-1)
for i in range((matrix.numel() - 1) // chunk_size + 1):
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
chunks.append(quantized_chunk)
absmaxes.append(absmax_chunk)
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
absmax = torch.cat(absmaxes)
return matrix_i8, (absmax, code)
def convert_to_int8(model):
"""Convert linear and embedding modules to 8-bit with optional adapters"""
for module in list(model.modules()):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
print(name, child)
setattr(
module,
name,
FrozenBNBLinear(
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
bias=child.bias,
),
)
elif isinstance(child, nn.Embedding):
setattr(
module,
name,
FrozenBNBEmbedding(
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
)
)
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self.attn)
convert_to_int8(self.mlp)
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
# loRa adapters
def add_adapters(model, adapter_dim=4, p = 0.1):
assert adapter_dim > 0
for name, module in model.named_modules():
if isinstance(module, FrozenBNBLinear):
if "attn" in name or "mlp" in name or "head" in name:
print("Adding adapter to", name)
module.adapter = nn.Sequential(
nn.Linear(module.in_features, adapter_dim, bias=False),
nn.Dropout(p=p),
nn.Linear(adapter_dim, module.out_features, bias=False),
)
print("Initializing", name)
nn.init.zeros_(module.adapter[2].weight)
else:
print("Not adding adapter to", name)
elif isinstance(module, FrozenBNBEmbedding):
print("Adding adapter to", name)
module.adapter = nn.Sequential(
nn.Embedding(module.num_embeddings, adapter_dim),
nn.Dropout(p=p),
nn.Linear(adapter_dim, module.embedding_dim, bias=False),
)
print("Initializing", name)
nn.init.zeros_(module.adapter[2].weight)