forked from Britefury/self-ensemble-visual-domain-adapt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare_gtsrb.py
106 lines (84 loc) · 3.87 KB
/
prepare_gtsrb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import click
@click.command()
@click.option('--width', type=int, default=40)
@click.option('--height', type=int, default=40)
@click.option('--ignore_roi', is_flag=True, default=False)
def prepare(width, height, ignore_roi):
import os
import sys
import numpy as np
import tables
import pandas as pd
import tqdm
import domain_datasets
import cv2
path = domain_datasets.get_data_dir('gtsrb')
output_path = os.path.join(path, 'gtsrb.h5')
print('Creating {}...'.format(output_path))
f_out = tables.open_file(output_path, mode='w')
g_out = f_out.create_group(f_out.root, 'gtsrb', 'GTSRB data')
filters = tables.Filters(complevel=9, complib='blosc')
train_X_arr = f_out.create_earray(
g_out, 'train_X_u8', tables.UInt8Atom(), (0, 3, height, width), filters=filters)
train_y_arr = f_out.create_earray(
g_out, 'train_y', tables.Int32Atom(), (0,))
test_X_arr = f_out.create_earray(
g_out, 'test_X_u8', tables.UInt8Atom(), (0, 3, height, width), filters=filters)
test_y_arr = f_out.create_earray(
g_out, 'test_y', tables.Int32Atom(), (0,))
train_path = os.path.join(path, 'Final_Training', 'Images')
test_path = os.path.join(path, 'Final_Test', 'Images')
if not os.path.exists(train_path):
print('ERROR!!! Training images path {} does not exist'.format(train_path))
return
if not os.path.exists(test_path):
print('ERROR!!! Test images path {} does not exist'.format(test_path))
return
def load_image_dir(X_arr, y_arr, dir_path, anno_path):
if not os.path.exists(anno_path):
print('ERROR!!! Could not find annotations file {}'.format(anno_path))
return False
annotations = pd.read_csv(anno_path, sep=';')
for index, row in tqdm.tqdm(annotations.iterrows(), desc='Images', total=len(annotations.index)):
image_filename = row['Filename']
image_path = os.path.join(dir_path, image_filename)
if not os.path.exists(image_path):
print('ERROR!!! Could not find image file {} mentioned in annotations'.format(image_path))
return False
image_data = cv2.imread(image_path)[:, :, ::-1]
if not ignore_roi:
# Crop out the region of interest
roi_x1 = int(row['Roi.X1'])
roi_x2 = int(row['Roi.X2'])
roi_y1 = int(row['Roi.Y1'])
roi_y2 = int(row['Roi.Y2'])
image_data = image_data[roi_y1:roi_y2, roi_x1:roi_x2, :]
image_data = cv2.resize(image_data, (width, height), interpolation=cv2.INTER_AREA)
class_id = int(row['ClassId'])
X_arr.append(image_data.transpose(2, 0, 1)[None, ...])
y_arr.append(np.array([class_id], dtype=np.int32))
return True
print('Processing training data...')
for clf_dir_name in tqdm.tqdm(os.listdir(train_path), desc='Class'):
clf_ndx = int(clf_dir_name)
clf_path = os.path.join(train_path, clf_dir_name)
anno_path = os.path.join(clf_path, 'GT-{:05d}.csv'.format(clf_ndx))
success = load_image_dir(train_X_arr, train_y_arr, clf_path, anno_path)
if not success:
f_out.close()
os.remove(output_path)
return
print('train_X.shape={}'.format(f_out.root.gtsrb.train_X_u8.shape))
print('train_y.shape={}'.format(f_out.root.gtsrb.train_y.shape))
print('Processing test data...')
test_anno_path = os.path.join(path, 'GT-final_test.csv')
success = load_image_dir(test_X_arr, test_y_arr, test_path, test_anno_path)
if not success:
f_out.close()
os.remove(output_path)
return
print('test_X.shape={}'.format(f_out.root.gtsrb.test_X_u8.shape))
print('test_y.shape={}'.format(f_out.root.gtsrb.test_y.shape))
f_out.close()
if __name__ == '__main__':
prepare()