-
Notifications
You must be signed in to change notification settings - Fork 44
/
bignum256.c
1049 lines (978 loc) · 30.9 KB
/
bignum256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** \file bignum256.c
*
* \brief Has functions which perform multi-precision modular arithmetic.
*
* Arithmetic operations supported include: addition, subtraction,
* multiplication, and inversion (i.e. division). For all operations, there
* is a version which operates under a prime finite field. For nearly all
* operations, there is also a version which does not operate under a prime
* finite field.
*
* All computation functions have been written in a way so that their
* execution time is independent of the data they are processing. However,
* the compiler may use optimisations which destroy this property; inspection
* of the generated assembly code is the only way to check. The advantage of
* data-independent timing is that implementations of cryptography based on
* this code should be more timing attack resistant. The main disadvantage is
* that the code is relatively inefficient.
*
* All functions here expect multi-precision numbers to be an array of bytes,
* with the least significant byte first. For example, {0xff, 0x02, 0x06}
* represents the number 393983. All numbers are unsigned.
* Normally, functions in this file assume the array to have a size of 32
* bytes (such functions will use the typedef #BigNum256), but some functions
* accept variable-sized arrays.
*
* To use most of the exported functions here, you must call bigSetField()
* first to set field parameters. If you don't do this, you'll get a
* segfault! Functions which do not operate under a prime finite field (eg.
* bigSubtractVariableSizeNoModulo() and bigCompare()) do not need
* bigSetField() to be called first.
*
* This file is licensed as described by the file LICENCE.
*/
#ifdef TEST
#include <assert.h>
#endif // #ifdef TEST
#ifdef TEST_BIGNUM256
#include <stdlib.h>
#include <stdio.h>
#include <gmp.h>
#include "endian.h"
#include "test_helpers.h"
#endif // #ifdef TEST_BIGNUM256
#include "common.h"
#include "bignum256.h"
/** The prime modulus to operate under.
* \warning This must be greater than 2 ^ 255.
* \warning The least significant byte of this must be >= 2, otherwise
* bigInvert() will not work correctly.
*/
static BigNum256 n;
/** The 2s complement of #n, with most significant zero bytes removed. */
static uint8_t *complement_n;
/** The size of #complement_n, in number of bytes. */
static uint8_t size_complement_n;
/** Compare two multi-precision numbers of arbitrary size.
* \param op1 One of the numbers to compare.
* \param op2 The other number to compare. This may alias op1.
* \param size The size of the multi-precision numbers op1 and op2, in number
* of bytes.
* \return #BIGCMP_GREATER if op1 > op2, #BIGCMP_EQUAL if they're equal
* and #BIGCMP_LESS if op1 < op2.
*/
uint8_t bigCompareVariableSize(uint8_t *op1, uint8_t *op2, uint8_t size)
{
uint8_t i;
uint8_t r;
uint8_t cmp;
r = BIGCMP_EQUAL;
for (i = (uint8_t)(size - 1); i < size; i--)
{
// The following code is a branch free way of doing:
// if (r == BIGCMP_EQUAL)
// {
// if (op1[i] > op2[i])
// {
// r = BIGCMP_GREATER;
// }
// }
// if (r == BIGCMP_EQUAL)
// {
// if (op2[i] > op1[i])
// {
// r = BIGCMP_LESS;
// }
// }
// Note that it relies on BIGCMP_EQUAL having the value 0.
// It inspired by the code at:
// http://aggregate.ee.engr.uky.edu/MAGIC/#Integer%20Selection
cmp = (uint8_t)((((uint16_t)((int)op2[i] - (int)op1[i])) >> 8) & BIGCMP_GREATER);
r = (uint8_t)(((((uint16_t)(-(int)r)) >> 8) & (r ^ cmp)) ^ cmp);
cmp = (uint8_t)((((uint16_t)((int)op1[i] - (int)op2[i])) >> 8) & BIGCMP_LESS);
r = (uint8_t)(((((uint16_t)(-(int)r)) >> 8) & (r ^ cmp)) ^ cmp);
}
return r;
}
/** Compare two 32 byte multi-precision numbers.
* \param op1 One of the 32 byte numbers to compare.
* \param op2 The other 32 byte number to compare. This may alias op1.
* \return #BIGCMP_GREATER if op1 > op2, #BIGCMP_EQUAL if they're equal
* and #BIGCMP_LESS if op1 < op2.
*/
uint8_t bigCompare(BigNum256 op1, BigNum256 op2)
{
return bigCompareVariableSize(op1, op2, 32);
}
/** Check if a multi-precision number of arbitrary size is equal to zero.
* \param op1 The number to check.
* \param size The size of the multi-precision number op1, in number of
* bytes.
* \return 1 if op1 is zero, 0 if op1 is not zero.
*/
uint8_t bigIsZeroVariableSize(uint8_t *op1, uint8_t size)
{
uint8_t i;
uint8_t r;
r = 0;
for (i = 0; i < size; i++)
{
r |= op1[i];
}
// The following line does: "return r ? 0 : 1;".
return (uint8_t)((((uint16_t)(-(int)r)) >> 8) + 1);
}
/** Check if a 32 byte multi-precision number is equal to zero.
* \param op1 The 32 byte number to check.
* \return 1 if op1 is zero, 0 if op1 is not zero.
*/
uint8_t bigIsZero(BigNum256 op1)
{
return bigIsZeroVariableSize(op1, 32);
}
/** Set a 32 byte multi-precision number to zero.
* \param r The 32 byte number to set to zero.
*/
void bigSetZero(BigNum256 r)
{
memset(r, 0, 32);
}
/** Assign one 32 byte multi-precision number to another.
* \param r The 32 byte number to assign to.
* \param op1 The 32 byte number to read from.
*/
void bigAssign(BigNum256 r, BigNum256 op1)
{
memcpy(r, op1, 32);
}
/** Swap endian representation of a 256 bit integer.
* \param buffer An array of 32 bytes representing the integer to change.
*/
void swapEndian256(BigNum256 buffer)
{
uint8_t i;
uint8_t temp;
for (i = 0; i < 16; i++)
{
temp = buffer[i];
buffer[i] = buffer[31 - i];
buffer[31 - i] = temp;
}
}
/** Set prime finite field parameters. The arrays passed as parameters to
* this function will never be written to, hence the const modifiers.
* \param in_n See #n.
* \param in_complement_n See #complement_n.
* \param in_size_complement_n See #size_complement_n.
* \warning There are some restrictions on what the parameters can be.
* See #n, #complement_n and #size_complement_n for more details.
*/
void bigSetField(const uint8_t *in_n, const uint8_t *in_complement_n, const uint8_t in_size_complement_n)
{
n = (BigNum256)in_n;
complement_n = (uint8_t *)in_complement_n;
size_complement_n = (uint8_t)in_size_complement_n;
}
/** Add (r = op1 + op2) two multi-precision numbers of arbitrary size,
* ignoring the current prime finite field. In other words, this does
* multi-precision binary addition.
* \param r The result will be written into here.
* \param op1 The first operand to add. This may alias r.
* \param op2 The second operand to add. This may alias r or op1.
* \param op_size Size, in bytes, of the operands and the result.
* \return 1 if carry occurred, 0 if no carry occurred.
*/
uint8_t bigAddVariableSizeNoModulo(uint8_t *r, uint8_t *op1, uint8_t *op2, uint8_t op_size)
{
uint16_t partial;
uint8_t carry;
uint8_t i;
carry = 0;
for (i = 0; i < op_size; i++)
{
partial = (uint16_t)((uint16_t)op1[i] + (uint16_t)op2[i] + (uint16_t)carry);
r[i] = (uint8_t)partial;
carry = (uint8_t)(partial >> 8);
}
return carry;
}
/** Subtract (r = op1 - op2) two multi-precision numbers of arbitrary size,
* ignoring the current prime finite field. In other words, this does
* multi-precision binary subtraction.
* \param r The result will be written into here.
* \param op1 The operand to subtract from. This may alias r.
* \param op2 The operand to subtract off op1. This may alias r or op1.
* \param op_size Size, in bytes, of the operands and the result.
* \return 1 if borrow occurred, 0 if no borrow occurred.
*/
uint8_t bigSubtractVariableSizeNoModulo(uint8_t *r, uint8_t *op1, uint8_t *op2, uint8_t op_size)
{
uint16_t partial;
uint8_t borrow;
uint8_t i;
borrow = 0;
for (i = 0; i < op_size; i++)
{
partial = (uint16_t)((uint16_t)op1[i] - (uint16_t)op2[i] - (uint16_t)borrow);
r[i] = (uint8_t)partial;
borrow = (uint8_t)((uint8_t)(partial >> 8) & 1);
}
return borrow;
}
/** Subtract (r = op1 - op2) two 32 byte multi-precision numbers,
* ignoring the current prime finite field. In other words, this does
* multi-precision binary subtraction.
* \param r The 32 byte result will be written into here.
* \param op1 The 32 byte operand to subtract from. This may alias r.
* \param op2 The 32 byte operand to subtract off op1. This may alias r or op1.
* \return 1 if borrow occurred, 0 if no borrow occurred.
*/
uint8_t bigSubtractNoModulo(BigNum256 r, BigNum256 op1, BigNum256 op2)
{
return bigSubtractVariableSizeNoModulo(r, op1, op2, 32);
}
/** Compute op1 modulo #n, where op1 is a 32 byte multi-precision number.
* The "modulo" part makes it sound like this function does division
* somewhere, but since #n is also a 32 byte multi-precision number, all
* this function actually does is subtract #n off op1 if op1 is >= #n.
* \param r The 32 byte result will be written into here.
* \param op1 The 32 byte operand to apply the modulo to. This may alias r.
*/
void bigModulo(BigNum256 r, BigNum256 op1)
{
uint8_t cmp;
uint8_t *lookup[2];
uint8_t zero[32];
bigSetZero(zero);
// The following 2 lines do: cmp = "bigCompare(op1, n) == BIGCMP_LESS ? 1 : 0".
cmp = (uint8_t)(bigCompare(op1, n) ^ BIGCMP_LESS);
cmp = (uint8_t)((((uint16_t)(-(int)cmp)) >> 8) + 1);
lookup[0] = n;
lookup[1] = zero;
bigSubtractNoModulo(r, op1, lookup[cmp]);
}
/** Add (r = (op1 + op2) modulo #n) two 32 byte multi-precision numbers under
* the current prime finite field.
* \param r The 32 byte result will be written into here.
* \param op1 The first 32 byte operand to add. This may alias r.
* \param op2 The second 32 byte operand to add. This may alias r or op1.
* \warning op1 and op2 must both be < #n.
*/
void bigAdd(BigNum256 r, BigNum256 op1, BigNum256 op2)
{
uint8_t too_big;
uint8_t cmp;
uint8_t *lookup[2];
uint8_t zero[32];
bigSetZero(zero);
#ifdef TEST
assert(bigCompare(op1, n) == BIGCMP_LESS);
assert(bigCompare(op2, n) == BIGCMP_LESS);
#endif // #ifdef TEST
too_big = bigAddVariableSizeNoModulo(r, op1, op2, 32);
cmp = (uint8_t)(bigCompare(r, n) ^ BIGCMP_LESS);
cmp = (uint8_t)((((uint16_t)(-(int)cmp)) >> 8) & 1);
too_big |= cmp;
lookup[0] = zero;
lookup[1] = n;
bigSubtractNoModulo(r, r, lookup[too_big]);
}
/** Subtract (r = (op1 - op2) modulo #n) two 32 byte multi-precision numbers
* under the current prime finite field.
* \param r The 32 byte result will be written into here.
* \param op1 The 32 byte operand to subtract from. This may alias r.
* \param op2 The 32 byte operand to sutract off op1. This may alias r or
* op1.
* \warning op1 and op2 must both be < #n.
*/
void bigSubtract(BigNum256 r, BigNum256 op1, BigNum256 op2)
{
uint8_t *lookup[2];
uint8_t too_small;
uint8_t zero[32];
bigSetZero(zero);
#ifdef TEST
assert(bigCompare(op1, n) == BIGCMP_LESS);
assert(bigCompare(op2, n) == BIGCMP_LESS);
#endif // #ifdef TEST
too_small = bigSubtractNoModulo(r, op1, op2);
lookup[0] = zero;
lookup[1] = n;
bigAddVariableSizeNoModulo(r, r, lookup[too_small], 32);
}
/** Divide a 32 byte multi-precision number by 2, truncating if necessary.
* \param r The 32 byte result will be written into here.
* \param op1 The 32 byte operand to divide by 2. This may alias r.
*/
void bigShiftRightNoModulo(BigNum256 r, const BigNum256 op1)
{
uint8_t i;
uint8_t carry;
uint8_t old_carry;
bigAssign(r, op1);
old_carry = 0;
for (i = 31; i < 32; i--)
{
carry = (uint8_t)(r[i] & 1);
r[i] = (uint8_t)((r[i] >> 1) | (old_carry << 7));
old_carry = carry;
}
}
#ifndef PLATFORM_SPECIFIC_BIGMULTIPLY
/** Multiplies (r = op1 x op2) two multi-precision numbers of arbitrary size,
* ignoring the current prime finite field. In other words, this does
* multi-precision binary multiplication.
* \param r The result will be written into here. The size of the result (in
* number of bytes) will be op1_size + op2_size.
* \param op1 The first operand to multiply. This cannot alias r.
* \param op1_size The size, in number of bytes, of op1.
* \param op2 The second operand to multiply. This cannot alias r, but it can
* alias op1.
* \param op2_size The size, in number of bytes, of op2.
* \warning This function is the speed bottleneck in an ECDSA signing
* operation. To speed up ECDSA signing, reimplement this in
* assembly and define PLATFORM_SPECIFIC_BIGMULTIPLY.
*/
void bigMultiplyVariableSizeNoModulo(uint8_t *r, uint8_t *op1, uint8_t op1_size, uint8_t *op2, uint8_t op2_size)
{
uint8_t cached_op1;
uint8_t low_carry;
uint8_t high_carry;
uint16_t multiply_result16;
uint8_t multiply_result_low8;
uint8_t multiply_result_high8;
uint16_t partial_sum;
uint8_t i;
uint8_t j;
memset(r, 0, (uint16_t)(op1_size + op2_size));
// The multiplication algorithm here is what GMP calls the "schoolbook"
// method. It's also sometimes referred to as "long multiplication". It's
// the most straightforward method of multiplication.
// Note that for the operand sizes this function typically deals with,
// and with the platforms this code is intended to run on, the Karatsuba
// algorithm isn't significantly better.
for (i = 0; i < op1_size; i++)
{
cached_op1 = op1[i];
high_carry = 0;
for (j = 0; j < op2_size; j++)
{
multiply_result16 = (uint16_t)((uint16_t)cached_op1 * (uint16_t)op2[j]);
multiply_result_low8 = (uint8_t)multiply_result16;
multiply_result_high8 = (uint8_t)(multiply_result16 >> 8);
partial_sum = (uint16_t)((uint16_t)r[i + j] + (uint16_t)multiply_result_low8);
r[i + j] = (uint8_t)partial_sum;
low_carry = (uint8_t)(partial_sum >> 8);
partial_sum = (uint16_t)((uint16_t)r[i + j + 1] + (uint16_t)multiply_result_high8 + (uint16_t)low_carry + (uint16_t)high_carry);
r[i + j + 1] = (uint8_t)partial_sum;
high_carry = (uint8_t)(partial_sum >> 8);
}
#ifdef TEST
assert(high_carry == 0);
#endif // #ifdef TEST
}
}
#endif // #ifndef PLATFORM_SPECIFIC_BIGMULTIPLY
/** Multiplies (r = (op1 x op2) modulo #n) two 32 byte multi-precision
* numbers under the current prime finite field.
* \param r The 32 byte result will be written into here.
* \param op1 The first 32 byte operand to multiply. This may alias r.
* \param op2 The second 32 byte operand to multiply. This may alias r or
* op1.
*/
void bigMultiply(BigNum256 r, BigNum256 op1, BigNum256 op2)
{
uint8_t temp[64];
uint8_t full_r[64];
uint8_t remaining;
bigMultiplyVariableSizeNoModulo(full_r, op1, 32, op2, 32);
// The modular reduction is done by subtracting off some multiple of
// n. The upper 256 bits of r are used as an estimate for that multiple.
// As long as n is close to 2 ^ 256, this estimate should be very close.
// However, since n < 2 ^ 256, the estimate will always be an
// underestimate. That's okay, because the algorithm can be applied
// repeatedly, until the upper 256 bits of r are zero.
// remaining denotes the maximum number of possible non-zero bytes left in
// the result.
remaining = 64;
while (remaining > 32)
{
memset(temp, 0, 64);
// n should be equal to 2 ^ 256 - complement_n. Therefore, subtracting
// off (upper 256 bits of r) * n is equivalent to setting the
// upper 256 bits of r to 0 and
// adding (upper 256 bits of r) * complement_n.
bigMultiplyVariableSizeNoModulo(\
temp,
complement_n, size_complement_n,
&(full_r[32]), (uint8_t)(remaining - 32));
memset(&(full_r[32]), 0, 32);
bigAddVariableSizeNoModulo(full_r, full_r, temp, remaining);
// This update of the bound is only valid for remaining > 32.
remaining = (uint8_t)(remaining - 32 + size_complement_n);
}
// The upper 256 bits of r should now be 0. But r could still be >= n.
// As long as n > 2 ^ 255, at most one subtraction is
// required to ensure that r < n.
bigModulo(full_r, full_r);
bigAssign(r, full_r);
}
/** Compute the modular inverse of a 32 byte multi-precision number under
* the current prime finite field (i.e. find r such that
* (r x op1) modulo #n = 1).
* \param r The 32 byte result will be written into here.
* \param op1 The 32 byte operand to find the inverse of. This may alias r.
*/
void bigInvert(BigNum256 r, BigNum256 op1)
{
uint8_t temp[32];
uint8_t i;
uint8_t j;
uint8_t byte_of_n_minus_2;
uint8_t bit_of_n_minus_2;
uint8_t *lookup[2];
// This uses Fermat's Little Theorem, of which an immediate corollary is:
// a ^ (p - 2) = a ^ (-1) modulo n.
// The Montgomery ladder method is used to perform the exponentiation.
bigAssign(temp, op1);
bigSetZero(r);
r[0] = 1;
lookup[0] = r;
lookup[1] = temp;
for (i = 31; i < 32; i--)
{
byte_of_n_minus_2 = n[i];
if (i == 0)
{
byte_of_n_minus_2 = (uint8_t)(byte_of_n_minus_2 - 2);
}
for (j = 0; j < 8; j++)
{
bit_of_n_minus_2 = (uint8_t)((byte_of_n_minus_2 & 0x80) >> 7);
byte_of_n_minus_2 = (uint8_t)(byte_of_n_minus_2 << 1);
// The next two lines do the following:
// if (bit_of_n_minus_2)
// {
// bigMultiply(r, r, temp);
// bigMultiply(temp, temp, temp);
// }
// else
// {
// bigMultiply(temp, r, temp);
// bigMultiply(r, r, r);
// }
bigMultiply(lookup[1 - bit_of_n_minus_2], r, temp);
bigMultiply(lookup[bit_of_n_minus_2], lookup[bit_of_n_minus_2], lookup[bit_of_n_minus_2]);
}
}
}
#ifdef TEST_BIGNUM256
/** Number of low edge test numbers (numbers near minimum). */
#define LOW_EDGE_CASES 700
/** Number of high edge test numbers (numbers near maximum). */
#define HIGH_EDGE_CASES 700
/** Number of "random" test numbers. */
#define RANDOM_CASES 3000
/** The total number of test numbers. */
#define TOTAL_CASES (LOW_EDGE_CASES + HIGH_EDGE_CASES + RANDOM_CASES)
/** 32 byte multi-precision representation of 0. */
static uint8_t zero[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
/** 32 byte multi-precision representation of 1. */
static uint8_t one[32] = {
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
/** The prime number used to define the prime finite field for secp256k1. */
static uint8_t secp256k1_p[32] = {
0x2f, 0xfc, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
/** 2s complement of #secp256k1_p. */
static const uint8_t secp256k1_complement_p[5] = {
0xd1, 0x03, 0x00, 0x00, 0x01};
/** The order of the base point used in secp256k1. */
static uint8_t secp256k1_n[32] = {
0x41, 0x41, 0x36, 0xd0, 0x8c, 0x5e, 0xd2, 0xbf,
0x3b, 0xa0, 0x48, 0xaf, 0xe6, 0xdc, 0xae, 0xba,
0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
/** 2s complement of #secp256k1_n. */
static const uint8_t secp256k1_complement_n[17] = {
0xbf, 0xbe, 0xc9, 0x2f, 0x73, 0xa1, 0x2d, 0x40,
0xc4, 0x5f, 0xb7, 0x50, 0x19, 0x23, 0x51, 0x45,
0x01};
/** Storage for test numbers. */
static uint8_t test_cases[TOTAL_CASES][32];
/** Generate test numbers according to:
* - Low edge cases will start from 0 and go up.
* - High edge cases will start from max - 1 and go down.
* - Random test cases will be within [0, max - 1].
* \param max The number of elements in the field, expressed as a 32 byte
* little-endian multi-precision integer. As a special case, all
* zeroes represents 2 ^ 256.
*/
static void generateTestCases(BigNum256 max)
{
int test_num;
int i;
int j;
uint8_t current_test[32];
bigSetZero(current_test);
test_num = 0;
for (i = 0; i < LOW_EDGE_CASES; i++)
{
bigAssign(test_cases[test_num++], current_test);
bigAddVariableSizeNoModulo(current_test, current_test, one, 32);
}
bigAssign(current_test, (BigNum256)max);
bigSubtractNoModulo(current_test, current_test, one);
for (i = 0; i < HIGH_EDGE_CASES; i++)
{
bigAssign(test_cases[test_num++], current_test);
bigSubtractNoModulo(current_test, current_test, one);
}
for (i = 0; i < RANDOM_CASES; i++)
{
do
{
for (j = 0; j < 32; j++)
{
current_test[j] = (uint8_t)rand();
}
if (bigIsZero((BigNum256)max))
{
// Special case; 2 ^ 256 is represented as 0 and every
// representable 256 bit number is >= 0. Thus the test
// below will always be true even though it should be
// false every time (since every representable 256 bit
// number is < 2 ^ 256).
break;
}
} while (bigCompare(current_test, (BigNum256)max) != BIGCMP_LESS);
bigAssign(test_cases[test_num++], current_test);
}
#ifdef TEST
assert(test_num == TOTAL_CASES);
#endif // #ifdef TEST
}
/** Convert number from byte array format to GMP limb array format.
* \param out Destination GMP limb array.
* \param in Source little-endian byte array.
* \param n The number of limbs in the GMP limb array.
*/
static void byteToMpn(mp_limb_t *out, BigNum256 in, int n)
{
int i;
for (i = 0; i < n; i++)
{
out[i] = (mp_limb_t)readU32LittleEndian(&(in[i * 4]));
}
}
/** Convert number from GMP limb array format to byte array format.
* \param out Destination little-endian byte array.
* \param in Source GMP limb array.
* \param n The number of limbs in the GMP limb array.
*/
static void mpnToByte(BigNum256 out, mp_limb_t *in, int n)
{
int i;
for (i = 0; i < n; i++)
{
writeU32LittleEndian(&(out[i * 4]), in[i]);
}
}
int main(void)
{
int operation;
int i;
int j;
uint8_t op1[32];
uint8_t op2[32];
uint8_t result[64];
uint8_t result_compare[64];
uint8_t returned;
int result_size; // in number of GMP limbs
int divisor_select;
mp_limb_t mpn_op1[8];
mp_limb_t mpn_op2[8];
mp_limb_t mpn_result[16];
mp_limb_t compare_returned;
mp_limb_t mpn_divisor[8];
mp_limb_t mpn_quotient[9];
mp_limb_t mpn_remainder[8];
if (sizeof(mp_limb_t) != 4)
{
printf("Please run tests on platform where sizeof(mp_limb_t) == 4");
exit(1);
}
initTests(__FILE__);
srand(42);
// Test bigCompareVariableSize(), since many other functions rely on it.
op1[0] = 10;
op2[0] = 2;
op1[1] = 5;
op2[1] = 5;
if (bigCompareVariableSize(op1, op2, 2) != BIGCMP_GREATER)
{
printf("bigCompare doesn't recognise when op1 > op2\n");
reportFailure();
}
else
{
reportSuccess();
}
op1[0] = 1;
if (bigCompareVariableSize(op1, op2, 2) != BIGCMP_LESS)
{
printf("bigCompare doesn't recognise when op1 < op2\n");
reportFailure();
}
else
{
reportSuccess();
}
op1[0] = 2;
if (bigCompareVariableSize(op1, op2, 2) != BIGCMP_EQUAL)
{
printf("bigCompare doesn't recognise when op1 == op2\n");
reportFailure();
}
else
{
reportSuccess();
}
op1[0] = 255;
op2[0] = 254;
if (bigCompareVariableSize(op1, op2, 2) != BIGCMP_GREATER)
{
printf("bigCompare doesn't recognise when op1 > op2, possibly a signed/unsigned thing\n");
reportFailure();
}
else
{
reportSuccess();
}
op1[0] = 254;
op2[0] = 255;
if (bigCompareVariableSize(op1, op2, 2) != BIGCMP_LESS)
{
printf("bigCompare doesn't recognise when op1 < op2, possibly a signed/unsigned thing\n");
reportFailure();
}
else
{
reportSuccess();
}
op1[0] = 1;
op2[0] = 2;
op1[1] = 4;
op2[1] = 3;
if (bigCompareVariableSize(op1, op2, 2) != BIGCMP_GREATER)
{
printf("bigCompare doesn't recognise when op1 > op2, possibly an endian thing\n");
reportFailure();
}
else
{
reportSuccess();
}
op1[0] = 2;
op2[0] = 1;
op1[1] = 3;
op2[1] = 4;
if (bigCompareVariableSize(op1, op2, 2) != BIGCMP_LESS)
{
printf("bigCompare doesn't recognise when op1 < op2, possibly a endian thing\n");
reportFailure();
}
else
{
reportSuccess();
}
// Test internal functions, which don't do modular reduction (hence
// max is 2 ^ 256).
generateTestCases(zero);
for (operation = 0; operation < 3; operation++)
{
for (i = 0; i < TOTAL_CASES; i++)
{
bigAssign(op1, test_cases[i]);
for (j = 0; j < TOTAL_CASES; j++)
{
bigAssign(op2, test_cases[j]);
// Calculate result using functions in this file.
if (operation == 0)
{
returned = bigAddVariableSizeNoModulo(result, op1, op2, 32);
result_size = 8;
}
else if (operation == 1)
{
returned = bigSubtractNoModulo(result, op1, op2);
result_size = 8;
}
else
{
returned = 0;
bigMultiplyVariableSizeNoModulo(result, op1, 32, op2, 32);
result_size = 16;
}
// Calculate result using GMP.
byteToMpn(mpn_op1, op1, 8);
byteToMpn(mpn_op2, op2, 8);
if (operation == 0)
{
compare_returned = mpn_add_n(mpn_result, mpn_op1, mpn_op2, 8);
}
else if (operation == 1)
{
compare_returned = mpn_sub_n(mpn_result, mpn_op1, mpn_op2, 8);
}
else
{
compare_returned = 0;
mpn_mul_n(mpn_result, mpn_op1, mpn_op2, 8);
}
// Compare results.
mpnToByte(result_compare, mpn_result, result_size);
if ((memcmp(result, result_compare, (size_t)(result_size * 4)))
|| (returned != compare_returned))
{
if (operation == 0)
{
printf("Test failed (internal addition)\n");
}
else if (operation == 1)
{
printf("Test failed (internal subtraction)\n");
}
else
{
printf("Test failed (internal multiplication)\n");
}
printf("op1: ");
printLittleEndian32(op1);
printf("\nop2: ");
printLittleEndian32(op2);
printf("\nExpected: ");
if (result_size > 8)
{
printLittleEndian32(&(result_compare[32]));
}
printLittleEndian32(result_compare);
printf("\nGot: ");
if (result_size > 8)
{
printLittleEndian32(&(result[32]));
}
printLittleEndian32(result);
printf("\n");
printf("Expected return value: %d\n", (int)compare_returned);
printf("Got return value: %d\n", (int)returned);
reportFailure();
}
else
{
reportSuccess();
}
} // for (j = 0; j < TOTAL_CASES; j++)
} // for (i = 0; i < TOTAL_CASES; i++)
} // for (operation = 0; operation < 3; operation++)
// Test bigShiftRightNoModulo().
for (i = 0; i < TOTAL_CASES; i++)
{
bigAssign(op1, test_cases[i]);
bigShiftRightNoModulo(result, op1);
byteToMpn(mpn_op1, op1, 8);
mpn_rshift(mpn_result, mpn_op1, 8, 1);
mpnToByte(result_compare, mpn_result, 8);
if (memcmp(result, result_compare, 32))
{
printf("Test failed (shift right)\n");
printf("op1: ");
printLittleEndian32(op1);
printf("\nExpected: ");
printLittleEndian32(result_compare);
printf("\nGot: ");
printLittleEndian32(result);
printf("\n");
reportFailure();
}
else
{
reportSuccess();
}
}
// Test non-internal functions, which do modular reduction. The modular
// reduction is tested against both p and n.
for (divisor_select = 0; divisor_select < 2; divisor_select++)
{
if (divisor_select == 0)
{
generateTestCases(secp256k1_p);
byteToMpn(mpn_divisor, (BigNum256)secp256k1_p, 8);
bigSetField(secp256k1_p, secp256k1_complement_p, sizeof(secp256k1_complement_p));
}
else
{
generateTestCases(secp256k1_n);
byteToMpn(mpn_divisor, (BigNum256)secp256k1_n, 8);
bigSetField(secp256k1_n, secp256k1_complement_n, sizeof(secp256k1_complement_n));
}
for (operation = 0; operation < 4; operation++)
{
for (i = 0; i < TOTAL_CASES; i++)
{
bigAssign(op1, test_cases[i]);
if (operation != 3)
{
for (j = 0; j < TOTAL_CASES; j++)
{
bigAssign(op2, test_cases[j]);
// Calculate result using functions in this file.
if (operation == 0)
{
bigAdd(result, op1, op2);
}
else if (operation == 1)
{
bigSubtract(result, op1, op2);
}
else
{
bigMultiply(result, op1, op2);
}
// Calculate result using GMP.
byteToMpn(mpn_op1, op1, 8);
byteToMpn(mpn_op2, op2, 8);
if (operation == 0)
{
compare_returned = mpn_add_n(mpn_result, mpn_op1, mpn_op2, 8);
if (compare_returned)
{
mpn_result[8] = 1;
}
else
{
mpn_result[8] = 0;
}
result_size = 9;
}
else if (operation == 1)
{
compare_returned = mpn_sub_n(mpn_result, mpn_op1, mpn_op2, 8);
if (compare_returned)
{
// Because the low-level functions in GMP
// don't care about sign, the division below
// won't work correctly if the subtraction
// resulted in a negative number.
// The workaround is to add the divisor (which
// does not change mpn_result modulo the
// dovisor) to make mpn_result positive.
mpn_add_n(mpn_result, mpn_result, mpn_divisor, 8);
}
result_size = 8;
}
else
{
mpn_mul_n(mpn_result, mpn_op1, mpn_op2, 8);
result_size = 16;
}
mpn_tdiv_qr(mpn_quotient, mpn_remainder, 0, mpn_result, result_size, mpn_divisor, 8);
// Compare results.
// Now that we're doing modular arithmetic, the
// results are always 256 bits (8 GMP limbs).
mpnToByte(result_compare, mpn_remainder, 8);
if (bigCompare(result, result_compare) != BIGCMP_EQUAL)
{
if (operation == 0)
{
printf("Test failed (modular addition)\n");
}
else if (operation == 1)
{
printf("Test failed (modular subtraction)\n");
}
else
{
printf("Test failed (modular multiplication)\n");
}
printf("divisor: ");
if (divisor_select == 0)
{
printLittleEndian32((BigNum256)secp256k1_p);
}
else
{
printLittleEndian32((BigNum256)secp256k1_n);
}
printf("\nop1: ");
printLittleEndian32(op1);
printf("\nop2: ");
printLittleEndian32(op2);
printf("\nExpected: ");
printLittleEndian32(result_compare);
printf("\nGot: ");
printLittleEndian32(result);
printf("\n");
reportFailure();
}
else
{
reportSuccess();
}
} // for (j = 0; j < TOTAL_CASES; j++)
} // if (operation != 3)
else