forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
client.js
110 lines (92 loc) · 3.58 KB
/
client.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import io from 'socket.io-client';
const predictContainer = document.getElementById('predictContainer');
const predictButton = document.getElementById('predict-button');
const socket =
io('http://localhost:8001',
{ reconnectionDelay: 300, reconnectionDelayMax: 300 });
const BAR_WIDTH_PX = 300;
const testSample = [2.668, -114.333, -1.908, 4.786, 25.707, -45.21, 78, 0];
predictButton.onclick = () => {
predictButton.disabled = true;
socket.emit('predictSample', testSample);
};
// functions to handle socket events
socket.on('connect', () => {
document.getElementById('trainingStatus').innerHTML = 'Training in Progress';
});
socket.on('accuracyPerClass', (accPerClass) => {
plotAccuracyPerClass(accPerClass);
});
socket.on('trainingComplete', () => {
document.getElementById('trainingStatus').innerHTML = 'Training Complete';
document.getElementById('predictSample').innerHTML = '[' + testSample.join(', ') + ']';
predictContainer.style.display = 'block';
});
socket.on('predictResult', (result) => {
plotPredictResult(result);
});
socket.on('disconnect', () => {
document.getElementById('trainingStatus').innerHTML = '';
predictContainer.style.display = 'none';
document.getElementById('waiting-msg').style.display = 'block';
document.getElementById('table').style.display = 'none';
});
// functions to update display
function plotAccuracyPerClass(accPerClass) {
document.getElementById('table').style.display = 'block';
document.getElementById('waiting-msg').style.display = 'none';
const table = document.getElementById('table-rows');
table.innerHTML = '';
// Sort class names before displaying.
const sortedClasses = Object.keys(accPerClass).sort();
sortedClasses.forEach(label => {
const scores = accPerClass[label];
// Row.
const rowDiv = document.createElement('div');
rowDiv.className = 'row';
table.appendChild(rowDiv);
// Label.
const labelDiv = document.createElement('div');
labelDiv.innerText = label;
labelDiv.className = 'label';
rowDiv.appendChild(labelDiv);
// Score.
const scoreContainer = document.createElement('div');
scoreContainer.className = 'score-container';
scoreContainer.style.width = BAR_WIDTH_PX + 'px';
rowDiv.appendChild(scoreContainer);
plotScoreBar(scores.training, scoreContainer);
if (scores.validation) {
plotScoreBar(scores.validation, scoreContainer, 'validation');
}
});
}
function plotScoreBar(score, container, className = '') {
const scoreDiv = document.createElement('div');
scoreDiv.className = 'score ' + className;
scoreDiv.style.width = (score * BAR_WIDTH_PX) + 'px';
scoreDiv.innerHTML = (score * 100).toFixed(1);
container.appendChild(scoreDiv);
}
function plotPredictResult(result) {
predictButton.textContent = 'Predict Pitch';
predictButton.disabled = false;
document.getElementById('predictResult').innerHTML = result;
console.log(result);
}