-
Notifications
You must be signed in to change notification settings - Fork 1
/
efe.py
533 lines (382 loc) · 10.8 KB
/
efe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 3 23:04:04 2022
All about expected free energy.
"""
import numpy as np
from matplotlib import pyplot as plt
## Wrapper
def G(p,q,units='b'):return efe_discrete_two_variables(p,q,units)
def efe_discrete_two_variables(
p,
q,
units='b'
):
"""
Calculate the two-variable form of expected free energy, defined as:
G(p,q) = SUM_z [ q(z) . SUM_x [ p(x|z) . log(q(z)/p(x,z)) ] ]
Parameters
----------
p : array-like.
Joint distribution over x and z.
The z are the rows, the x are the columns.
Sum over axis=0 is p(x)
Sum over axis=1 is p(z)
q : array-like
Marginal distribution over z.
units : Char1, optional
[b]its or [n]ats. The default is 'b'.
Returns
-------
G : float.
The expected free energy.
"""
## Initialise
p = np.array(p)
q = np.array(q)
## Get p_z marginal array
p_z = p.sum(axis=1)
## Sum over z
total = 0
for i in range(len(q)):
## Get z value
q_zi = q[i]
## Sum over x
for j in range(len(p[0])):
## Get conditional probabilities p(x|z)
p_x_given_z = (p.T/p_z).T
## The conditional probability of THIS value of x given THIS value of z.
p_cond = p_x_given_z[i][j]
## The logarithm.
logger = np.log(q_zi/p[i][j])
if units == 'b':
logger /= np.log(2)
## Add this component of the sum to the total.
total += q_zi * p_cond * logger
return total
def entropy(
p_x,
units = 'b'
):
"""
Entropy over marginal distribution p_x.
Parameters
----------
p_x : array-like
DESCRIPTION.
Returns
-------
None.
"""
p_x = np.array(p_x)
assert p_x.sum() == 1
total = 0
for i in range(len(p_x)):
logger = np.log(1/p_x[i])
if units == 'b':
logger /= np.log(2)
total += p_x[i] * logger
return total
def conditional_entropy(
p,
units='b'
):
"""
Calculate H(X|Z) from joint distribution p(x,z). Definition:
H(X|Z) = SUM_x,z[ p(x,z) log(p(z)/p(x,z)) ]
Parameters
----------
p : array-like.
Joint distribution over x and z.
The z are the rows, the x are the columns.
Sum over axis=0 is p(x)
Sum over axis=1 is p(z).
units : Char1, optional
[b]its or [n]ats. The default is 'b'.
Returns
-------
H : float.
The conditional entropy.
"""
## Initialise
p = np.array(p)
## Get p_z
p_z = p.sum(axis=1)
total = 0
## Sum over Z
for i in range(len(p)):
## Get the value of p(z) for this row
p_zi = p_z[i]
## Sum over X
for j in range(len(p[i])):
## Get joint
p_joint = p[i][j]
## Get log
logger = np.log(p_zi/p_joint)
## Check units
if units == 'b':
logger /= np.log(2)
## Add this component to the total
total += p_joint * logger
return total
"""
Components of G
"""
def G_epistemic(
p,
q,
units = 'b'
):
"""
Definition:
G_epistemic = SUM_z[ q(z) SUM_x[ p(x|z) . log(q(z)/p(z|x)) ] ]
Parameters
----------
p : TYPE
DESCRIPTION.
q : TYPE
DESCRIPTION.
units : Char1, optional
[b]its or [n]ats. The default is 'b'.
Returns
-------
None.
"""
## Initialise
p = np.array(p)
q = np.array(q)
## Get p_z and p_x marginal arrays
p_z = p.sum(axis=1)
p_x = p.sum(axis=0)
## Sum over z
total = 0
for i in range(len(q)):
## Get z value
q_zi = q[i]
## Sum over x
for j in range(len(p[0])):
## Get conditional probabilities p(x|z) and p(z|x)
p_x_given_z = (p.T/p_z).T
p_z_given_x = p/p_x
## The conditional probability of THIS value of x given THIS value of z.
p_cond_x_z = p_x_given_z[i][j]
## This conditional probability of THIS value of z given THIS value of x.
p_cond_z_x = p_z_given_x[i][j]
## The logarithm.
logger = np.log(q_zi/p_cond_z_x)
if units == 'b':
logger /= np.log(2)
## Add this component of the sum to the total.
total += q_zi * p_cond_x_z * logger
return total
def G_pragmatic(
p,
q,
units = 'b'
):
"""
Definition:
G_pragmatic = SUM_z[ q(z) SUM_x[ p(x|z) . log(1/p(x)) ] ]
Parameters
----------
p : TYPE
DESCRIPTION.
q : TYPE
DESCRIPTION.
units : Char1, optional
[b]its or [n]ats. The default is 'b'.
Returns
-------
None.
"""
## Initialise
p = np.array(p)
q = np.array(q)
## Get p_z and p_x marginal arrays
p_z = p.sum(axis=1)
p_x = p.sum(axis=0)
## Sum over z
total = 0
for i in range(len(q)):
## Get z value
q_zi = q[i]
## Sum over x
for j in range(len(p[0])):
## Get conditional probabilities p(x|z)
p_x_given_z = (p.T/p_z).T
## The conditional probability of THIS value of x given THIS value of z.
p_cond_x_z = p_x_given_z[i][j]
## This conditional probability of THIS value of z given THIS value of x.
# p_cond_z_x = p_z_given_x[i][j]
## The logarithm.
logger = np.log(1/p_x[j])
if units == 'b':
logger /= np.log(2)
## Add this component of the sum to the total.
total += q_zi * p_cond_x_z * logger
return total
"""
Testing theorems
"""
def test_entropy_pragmatic(p,q,tolerance=1e-8):
"""
Test whether G_pragmatic(p,q) == entropy(p_x)
Parameters
----------
p : TYPE
DESCRIPTION.
q : TYPE
DESCRIPTION.
Returns
-------
None.
"""
p = np.array(p)
q = np.array(q)
p_x = p.sum(axis=0)
difference = G_pragmatic(p, q) - entropy(p_x)
return abs(difference) < tolerance
def test_entropy_pragmatic_many(p,grain=0.05):
"""
Holds coincidentally whenever p_x == [0.5,0.5].
Parameters
----------
p : TYPE
DESCRIPTION.
grain : TYPE, optional
DESCRIPTION. The default is 0.05.
Returns
-------
TYPE
DESCRIPTION.
"""
for q1 in np.arange(0+grain,1,grain):
q = np.array([q1,1-q1])
if not test_entropy_pragmatic(p,q):
return q
return True
def test_G_decomposition(p,q,tolerance=1e-8):
"""
Check that G = G_epistemic + G_pragmatic.
Fails with p = [[0.05,0.2],[0.05,0.7]].
TODO: check why this fails.
Parameters
----------
p : TYPE
DESCRIPTION.
q : TYPE
DESCRIPTION.
Returns
-------
None.
"""
difference = G(p,q) - G_epistemic(p,q) - G_pragmatic(p,q)
return abs(difference) < tolerance
def test_conditional_entropy_theorem(
p = np.array([[0.4, 0.2],[0.1, 0.3]]),
grain = 0.05
):
"""
Seems to fail with p = [[0.05,0.2],[0.05,0.7]].
Best q is [0.2,0.8]
Parameters
----------
p : TYPE, optional
DESCRIPTION. The default is np.array([[0.4, 0.2],[0.1, 0.3]]).
grain : TYPE, optional
DESCRIPTION. The default is 0.05.
Returns
-------
verified : bool.
True if the theorem is satisfied to the stated level of grain.
"""
p = np.array(p)
assert p.sum() == 1
p_z = p.sum(axis=1)
## sanity check
assert sum(p_z) == 1
# cond_ent = conditional_entropy(p)
G=99999
for q1 in np.arange(0+grain,1,grain):
q = np.array([q1,1-q1])
G_new = efe_discrete_two_variables(p,q)
if G_new < G:
G = G_new
q_winner = q
## Is q_winner within rounding tolerance of marginal p_z?
if sum(abs(p_z-q_winner))<1e-8:
return True
return q_winner,p_z
"""
=================
+ Plots +
=================
"""
def plot_efe_conditional_entropy(
p,
grain=0.05,
units='b'
):
"""
Plot expected free energy against conditional entropy
for a range of distributions q.
Parameters
----------
p : TYPE
DESCRIPTION.
q : TYPE
DESCRIPTION.
Returns
-------
None.
"""
## 1. PREPARE DATA
## Length of x-axis array.
q1_values = np.arange(0+grain,1,grain)
len_x = len(q1_values)
## Conditional entropy of p.
cond_ent = conditional_entropy(p,units)
## Create y-axis values for conditional entropy.
## This is just the single value repeated <len_x> times.
y_cond_ent = np.full((len_x,),cond_ent)
## Get expected free energy for various values of q
y_G = []
for q1 in q1_values:
## Create two-value distribution q
q = np.array([q1,1-q1])
## Get expected free energy
G = efe_discrete_two_variables(p,q)
## Add to series
y_G.append(G)
## 2. PLOT DATA
## Refresh plt object
# plt.gcf() # initial guess
# plt.gca() # initial guess
plt.clf() # initial guess
## Clear plot
# plt.clf() # correct
plt.cla() # correct
plt.close() # correct
## Create new figure
# fig,ax = plt.figure() # initial guess
fig,ax=plt.subplots() # correct
## X-axis label
ax.set_xlabel("Value of q1")
## Y-axis label
ax.set_ylabel("Bits" if units=='b' else 'Nats')
## Y-axis limits
plt.ylim(0,max(y_G))
## Plot conditional entropy
plt.plot(q1_values, # x-axis
y_cond_ent, # y-axis
label= 'Conditional entropy' # forgot this
)
## Plot expected free energy
plt.plot(q1_values, # x-axis
y_G, # y-axis
label = 'Expected free energy' # forgot this
)
## Create legend
plt.legend()
## Display plot
plt.show()