forked from SeanNaren/deepspeech.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UtilsMultiGPU.lua
77 lines (74 loc) · 2.6 KB
/
UtilsMultiGPU.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
require 'rnn'
require 'nngraph'
function makeDataParallel(model, nGPU)
if nGPU > 0 then
cudnn.fastest = true
local function BatchNorm(module)
return torch.type(module):find('BatchNormalization')
end
model = cudnn.convert(model, cudnn, BatchNorm)
if nGPU > 1 then
gpus = torch.range(1, nGPU):totable()
dpt = nn.DataParallelTable(1):add(model, gpus):threads(function()
require 'nngraph'
require 'cudnn'
cudnn.fastest = true
require 'BatchBRNNReLU'
end)
dpt.gradInput = nil
model = dpt
end
model:cuda()
end
return model
end
local function cleanDPT(module, device)
-- This assumes this DPT was created by the function above: all the
-- module.modules are clones of the same network on different GPUs
-- hence we only need to keep one when saving the model to the disk.
local newDPT = nn.DataParallelTable(1)
cutorch.setDevice(device or 1)
newDPT:add(module:get(1), device or 1)
return newDPT
end
function saveDataParallel(modelPath, model)
if torch.type(model) == 'nn.DataParallelTable' then
torch.save(modelPath, cleanDPT(model))
elseif torch.type(model) == 'nn.Sequential' then
local temp_model = nn.Sequential()
for i, module in ipairs(model.modules) do
if torch.type(module) == 'nn.DataParallelTable' then
temp_model:add(cleanDPT(module))
else
temp_model:add(module)
end
end
torch.save(modelPath, temp_model)
elseif torch.type(model) == 'nn.gModule' then
torch.save(modelPath, model)
else
error('This saving function only works with Sequential or DataParallelTable modules.')
end
end
function loadDataParallel(modelPath, nGPU)
if nGPU > 1 then
require 'cudnn'
require 'BatchBRNNReLU'
end
local model = torch.load(modelPath)
if torch.type(model) == 'nn.DataParallelTable' then
return makeDataParallel(model:get(1):float(), nGPU)
elseif torch.type(model) == 'nn.Sequential' then
for i, module in ipairs(model.modules) do
if torch.type(module) == 'nn.DataParallelTable' then
model.modules[i] = makeDataParallel(module:get(1):float(), nGPU)
end
end
return model
elseif torch.type(model) == 'nn.gModule' then
model = makeDataParallel(model, nGPU)
return model
else
error('The loaded model is not a Sequential or DataParallelTable module.')
end
end