-
Notifications
You must be signed in to change notification settings - Fork 0
/
deepQ.py
184 lines (153 loc) · 7.89 KB
/
deepQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
import random
import matplotlib.pyplot as plt
import scipy.misc
import os
import sys
#sys.path.append("/Users/constantinos/Documents/Projects/DeepRL-Agents-master")
from gridworld import gameEnv
# Flags
batch_size = 32 #How many experiences to use for each training step.
update_freq = 4 #How often to perform a training step.
y = .99 #Discount factor on the target Q-values
startE = 1 #Starting chance of random action
endE = 0.1 #Final chance of random action
annealing_steps = 10000. #How many steps of training to reduce startE to endE.
num_episodes = 10000 #How many episodes of game environment to train network with.
pre_train_steps = 10000 #How many steps of random actions before training begins.
max_epLength = 50 #The max allowed length of our episode.
load_model = False #Whether to load a saved model.
path = "./dqn" #The path to save our model to.
h_size = 512 #The size of the final convolutional layer before splitting it into Advantage and Value streams.
tau = 0.001 #Rate to update target network toward primary network
# Build non partial environment (the command in python console creates in science view the plot of the map)
env = gameEnv(partial=False,size=5)
class Qnetwork():
def __init__(self, h_size):
# The network recieves a frame from the game, flattened into an array.
# It then resizes it and processes it through four convolutional layers.
self.scalarInput = tf.placeholder(shape=[None, 21168], dtype=tf.float32)
self.imageIn = tf.reshape(self.scalarInput, shape=[-1, 84, 84, 3]) / 255.
self.conv1 = slim.conv2d(inputs=self.imageIn, num_outputs=32, kernel_size=[8, 8], stride=[4, 4], padding='VALID',biases_initializer=None)
self.conv2 = slim.conv2d(inputs=self.conv1, num_outputs=64, kernel_size=[4, 4], stride=[2, 2], padding='VALID',biases_initializer=None)
self.conv3 = slim.conv2d(inputs=self.conv2, num_outputs=64, kernel_size=[3, 3], stride=[1, 1], padding='VALID',biases_initializer=None)
self.conv4 = slim.conv2d(inputs=self.conv3, num_outputs=h_size, kernel_size=[7, 7], stride=[1, 1], padding='VALID',biases_initializer=None)
# We take the output from the final convolutional layer and split it into separate advantage and value streams.
self.streamAC, self.streamVC = tf.split(self.conv4, 2, 3)
self.streamA = slim.flatten(self.streamAC)
self.streamV = slim.flatten(self.streamVC)
xavier_init = tf.contrib.layers.xavier_initializer()
self.AW = tf.Variable(xavier_init([h_size // 2, env.actions]))
self.VW = tf.Variable(xavier_init([h_size // 2, 1]))
self.Advantage = tf.matmul(self.streamA, self.AW)
self.Value = tf.matmul(self.streamV, self.VW)
# Then combine them together to get our final Q-values.
self.Qout = self.Value + tf.subtract(self.Advantage, tf.reduce_mean(self.Advantage, axis=1, keep_dims=True))
self.predict = tf.argmax(self.Qout, 1)
# Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
self.targetQ = tf.placeholder(shape=[None], dtype=tf.float32)
self.actions = tf.placeholder(shape=[None], dtype=tf.int32)
self.actions_onehot = tf.one_hot(self.actions, env.actions, dtype=tf.float32)
self.Q = tf.reduce_sum(tf.multiply(self.Qout, self.actions_onehot), axis=1)
self.td_error = tf.square(self.targetQ - self.Q)
self.loss = tf.reduce_mean(self.td_error)
self.trainer = tf.train.AdamOptimizer(learning_rate=0.0001)
self.updateModel = self.trainer.minimize(self.loss)
class experience_buffer():
def __init__(self, buffer_size=50000):
self.buffer = []
self.buffer_size = buffer_size
def add(self, experience):
if len(self.buffer) + len(experience) >= self.buffer_size:
self.buffer[0:(len(experience) + len(self.buffer)) - self.buffer_size] = []
self.buffer.extend(experience)
def sample(self, size):
return np.reshape(np.array(random.sample(self.buffer, size)), [size, 5])
def processState(states):
return np.reshape(states,[21168])
def updateTargetGraph(tfVars,tau):
total_vars = len(tfVars)
op_holder = []
for idx,var in enumerate(tfVars[0:total_vars//2]):
op_holder.append(tfVars[idx+total_vars//2].assign((var.value()*tau) + ((1-tau)*tfVars[idx+total_vars//2].value())))
return op_holder
def updateTarget(op_holder,sess):
for op in op_holder:
sess.run(op)
tf.reset_default_graph()
mainQN = Qnetwork(h_size)
targetQN = Qnetwork(h_size)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
trainables = tf.trainable_variables()
targetOps = updateTargetGraph(trainables, tau)
myBuffer = experience_buffer()
# Set the rate of random action decrease.
e = startE
stepDrop = (startE - endE) / annealing_steps
# create lists to contain total rewards and steps per episode
jList = []
rList = []
total_steps = 0
# Make a path for our model to be saved in.
if not os.path.exists(path):
os.makedirs(path)
with tf.Session() as sess:
sess.run(init)
if load_model == True:
print('Loading Model...')
ckpt = tf.train.get_checkpoint_state(path)
saver.restore(sess, ckpt.model_checkpoint_path)
for i in range(num_episodes):
episodeBuffer = experience_buffer()
# Reset environment and get first new observation
s = env.reset()
s = processState(s)
d = False
rAll = 0
j = 0
# The Q-Network
while j < max_epLength: # If the agent takes longer than 200 moves to reach either of the blocks, end the trial.
j += 1
# Choose an action by greedily (with e chance of random action) from the Q-network
if np.random.rand(1) < e or total_steps < pre_train_steps:
a = np.random.randint(0, 4)
else:
a = sess.run(mainQN.predict, feed_dict={mainQN.scalarInput: [s]})[0]
s1, r, d = env.step(a)
s1 = processState(s1)
total_steps += 1
episodeBuffer.add(
np.reshape(np.array([s, a, r, s1, d]), [1, 5])) # Save the experience to our episode buffer.
if total_steps > pre_train_steps:
if e > endE:
e -= stepDrop
if total_steps % (update_freq) == 0:
trainBatch = myBuffer.sample(batch_size) # Get a random batch of experiences.
# Below we perform the Double-DQN update to the target Q-values
Q1 = sess.run(mainQN.predict, feed_dict={mainQN.scalarInput: np.vstack(trainBatch[:, 3])})
Q2 = sess.run(targetQN.Qout, feed_dict={targetQN.scalarInput: np.vstack(trainBatch[:, 3])})
end_multiplier = -(trainBatch[:, 4] - 1)
doubleQ = Q2[range(batch_size), Q1]
targetQ = trainBatch[:, 2] + (y * doubleQ * end_multiplier)
# Update the network with our target values.
_ = sess.run(mainQN.updateModel,feed_dict={mainQN.scalarInput: np.vstack(trainBatch[:, 0]), mainQN.targetQ: targetQ,
mainQN.actions: trainBatch[:, 1]})
updateTarget(targetOps, sess) # Update the target network toward the primary network.
rAll += r
s = s1
if d == True:
break
myBuffer.add(episodeBuffer.buffer)
jList.append(j)
rList.append(rAll)
# Periodically save the model.
if i % 1000 == 0:
saver.save(sess, path + '/model-' + str(i) + '.ckpt')
print("Saved Model")
if len(rList) % 10 == 0:
print(total_steps, np.mean(rList[-10:]), e)
saver.save(sess, path + '/model-' + str(i) + '.ckpt')
print("Percent of succesful episodes: " + str(sum(rList) / num_episodes) + "%")