forked from sustainable-computing-io/kepler-model-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common_plot.py
102 lines (87 loc) · 4.17 KB
/
common_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# plot.py
# to visualize data
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import sys
#################################################################
# import internal src
src_path = os.path.join(os.path.dirname(__file__), '..', 'src')
sys.path.append(src_path)
#################################################################
from util import assure_path, FeatureGroups, FeatureGroup, PowerSourceMap
from util.prom_types import TIMESTAMP_COL
from util.extract_types import col_to_component
from sklearn.preprocessing import MaxAbsScaler
from train.extractor.preprocess import get_extracted_power_labels
from estimate import get_label_power_colname
plot_output_path = os.path.join(os.path.dirname(__file__), 'data', 'plot_output')
assure_path(plot_output_path)
def _fig_filename(figname, save_path=plot_output_path):
return os.path.join(save_path, figname + ".png")
def preprocess_data(df):
scaler = MaxAbsScaler()
df = df.reset_index()
normalized_data = scaler.fit_transform(df.values)
normalized_df = pd.DataFrame(normalized_data, columns=df.columns, index=df.index)
return normalized_df
# plot extract result
from extractor_test import test_energy_source, get_extract_results, get_expected_power_columns, test_extractors
def plot_extract_result(extractor_name, feature_group, result, energy_source=test_energy_source, label_cols=get_expected_power_columns(), save_path=plot_output_path, features=None, title=None):
energy_components = PowerSourceMap[energy_source]
extracted_power_labels = get_extracted_power_labels(result, energy_components, label_cols)
extracted_power_labels = preprocess_data(extracted_power_labels[5:])
result = preprocess_data(result[5:])
if features is None:
features = FeatureGroups[FeatureGroup[feature_group]]
ncols = max(len(features), len(energy_components))
fig, axes = plt.subplots(nrows=2, ncols=ncols, figsize=(5+2*len(features),5))
axes = np.array(axes).ravel()
i = 0
for feature in features:
sns.lineplot(data=result, x=TIMESTAMP_COL, y=feature, ax=axes[i])
axes[i].set_title("{}".format(feature))
axes[i].set_ylabel("")
i += 1
while i < ncols:
fig.delaxes(axes[i])
i += 1
i = ncols
for energy_component in energy_components:
component_label_col = get_label_power_colname(energy_component)
sns.lineplot(data=extracted_power_labels, x=TIMESTAMP_COL, y=component_label_col, ax=axes[i])
axes[i].set_title("{}".format(component_label_col))
axes[i].set_ylabel("")
i += 1
while i < 2*ncols:
fig.delaxes(axes[i])
i += 1
if title is None:
title = "{} on {}".format(extractor_name, feature_group)
plt.suptitle(title)
figname = "extract_result_{}_{}".format(extractor_name, feature_group)
plt.tight_layout()
fig.savefig(_fig_filename(figname, save_path=save_path))
def plot_power_cols(extractor_name, result, energy_source=test_energy_source, label_cols=get_expected_power_columns(), save_path=plot_output_path):
energy_components = PowerSourceMap[energy_source]
fig = plt.figure()
target_cols = [col for col in label_cols if col_to_component(col) in energy_components]
target_df = result[[TIMESTAMP_COL] + target_cols].groupby([TIMESTAMP_COL]).mean().reset_index().sort_index()
df = pd.melt(target_df, id_vars=[TIMESTAMP_COL], var_name='source', value_name='watts')
ax = sns.lineplot(data=df, x=TIMESTAMP_COL, y='watts', hue='source')
title = '{} {}'.format(extractor_name, energy_source)
ax.set_title(title)
figname = "extract_result_{}_{}".format(extractor_name, energy_source)
plt.tight_layout()
fig.savefig(_fig_filename(figname, save_path=save_path))
def plot_extract_results():
for extractor in test_extractors:
extractor_name = extractor.__class__.__name__
extractor_results = get_extract_results(extractor_name, node_level=True)
for feature_group, result in extractor_results.items():
plot_extract_result(extractor_name, feature_group, result)
plot_power_cols(extractor_name, result)
if __name__ == '__main__':
plot_extract_results()