-
Notifications
You must be signed in to change notification settings - Fork 8
/
model.py
65 lines (54 loc) · 2.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.models import resnet18
class EZVSL(nn.Module):
def __init__(self, tau, dim):
super(EZVSL, self).__init__()
self.tau = tau
# Vision model
self.imgnet = resnet18(pretrained=True)
self.imgnet.avgpool = nn.Identity()
self.imgnet.fc = nn.Identity()
self.img_proj = nn.Conv2d(512, dim, kernel_size=(1, 1))
# Audio model
self.audnet = resnet18()
self.audnet.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
self.audnet.avgpool = nn.AdaptiveMaxPool2d((1, 1))
self.audnet.fc = nn.Identity()
self.aud_proj = nn.Linear(512, dim)
# Initialize weights (except pretrained visual model)
for net in [self.audnet, self.img_proj, self.aud_proj]:
for m in net.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.trunc_normal_(
m.weight, mean=0.0, std=0.01)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.normal_(m.weight, mean=1, std=0.02)
nn.init.constant_(m.bias, 0)
def max_xmil_loss(self, img, aud):
B = img.shape[0]
Slogits = torch.einsum('nchw,mc->nmhw', img, aud) / self.tau
logits = Slogits.flatten(-2, -1).max(dim=-1)[0]
labels = torch.arange(B).long().to(img.device)
loss = F.cross_entropy(logits, labels) + F.cross_entropy(logits.permute(1, 0), labels)
return loss, Slogits
def forward(self, image, audio):
# Image
img = self.imgnet(image).unflatten(1, (512, 7, 7))
img = self.img_proj(img)
img = nn.functional.normalize(img, dim=1)
# Audio
aud = self.audnet(audio)
aud = self.aud_proj(aud)
aud = nn.functional.normalize(aud, dim=1)
# Compute loss
loss, logits = self.max_xmil_loss(img, aud)
# Compute avl maps
with torch.no_grad():
B = img.shape[0]
Savl = logits[torch.arange(B), torch.arange(B)]
return loss, Savl