forked from EndlessCheng/codeforces-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.go
1260 lines (1149 loc) · 31.2 KB
/
search.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package copypasta
import (
"math/bits"
"sort"
)
/* 状态空间
一个实际问题的各种可能情况构成的集合
由小及大:当状态空间位于边界上或某个小范围内等特殊情形,该状态空间的解往往是已知的。
若能将此解的应用场景扩大到原问题的状态空间,并且扩展过程的每个步骤具有相似性,就可以考虑使用递推或递归求解。
换句话说,程序在每个步骤上应该面对相同种类的问题,这些问题都是原问题的一个「子问题」,可能仅在规模或者某些限制条件上有所区别,并且能够使用「求解原问题的程序」进行求解。
COUNTING SELF-AVOIDING WALKS https://arxiv.org/pdf/1304.7216.pdf
https://oeis.org/A096969 Number of directed Hamiltonian paths in (n X n)-grid graph
1, 8, 40, 552, 8648, 458696, 27070560, 6046626568, 1490832682992, 1460089659025264, 1573342970540617696, 6905329711608694708440, 33304011435341069362631160, 663618176813467308855850585056, 14527222735920532980525200234503048
https://oeis.org/A236753 Number of simple (non-intersecting) directed paths in (n X n)-grid graph
1, 28, 653, 28512, 3060417, 873239772, 687430009069, 1532025110398168, 9829526954625359697, 183563561823425961932572, 10056737067604248527218979485, 1626248896102138091401810358337184
https://oeis.org/A001411 Number of n-step self-avoiding walks on square lattice
1, 4, 12, 36, 100, 284, 780, 2172, 5916, 16268, 44100, 120292, 324932, 881500, 2374444, 6416596, 17245332, 46466676, 124658732, 335116620, 897697164, 2408806028, 6444560484, 17266613812, 46146397316, 123481354908, 329712786220, 881317491628
Number of simple (non-intersecting) directed paths [of length n] in (n X n)-grid graph
1, 8, 44, 232, 972, 4008, 14932, 55104, 191068, 657848 [10], 2176716, 7157296, 22902052, 72898328, 227471396, 706797600, 2162946116
https://oeis.org/A038373 Number of n-step self-avoiding paths on quadrant grid starting at quadrant origin
1, 2, 4, 10, 24, 60, 146, 366, 912, 2302, 5800, 14722, 37368, 95304, 243168, 622518, 1594622, 4094768, 10521384, 27085436, 69768478, 179982688, 464564220, 1200563864, 3104192722, 8034256412, 20803994184, 53915334890, 139785953076, 362681515714, 941361260956, 2444866458524, 6351963691964
Number of n-step self-avoiding paths on quadrant grid starting at center
1, 2, 8, 20, 64, 172, 520, 1432, 4176, 11504, 32824, 90024, 252992, 690596, 1919328, 5217716, 14380256, 38957328, 106676600
https://oeis.org/A145157 Number of Greek-key tours on an n X n board; i.e., self-avoiding walks on n X n grid starting in top left corner
1, 2, 8, 52, 824, 22144, 1510446, 180160012, 54986690944, 29805993260994, 41433610713353366, 103271401574007978038, 660340630211753942588170, 7618229614763015717175450784, 225419381425094248494363948728158
https://oeis.org/A000532 Number of Hamiltonian paths from NW to SW corners in an n X n grid
1, 1, 2, 8, 86, 1770, 88418, 8934966, 2087813834, 1013346943033, 1111598871478668, 2568944901392936854, 13251059359839620127088, 145194816279817259193401518, 3524171261632305641165676374930
https://oeis.org/A000129 Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2)
https://en.wikipedia.org/wiki/Pell_number
Number of lattice paths from (0,0) to the line x=n-1 consisting of U=(1,1), D=(1,-1) and H=(2,0) steps (i.e., left factors of Grand Schroeder paths)
for example, a(3)=5, counting the paths H, UD, UU, DU and DD
https://oeis.org/A048739 A000129 的前缀和
https://oeis.org/A001333 Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1)
https://codeforces.com/problemset/problem/954/F
*/
/* 搜索+剪枝
任意子集(不需要剪枝的话可以直接位运算枚举)
部分子集
排列(递归+跳过已经枚举的值)
https://codeforces.com/problemset/problem/429/C
*/
func searchCollection() {
// 指数型,即 n 层循环
// https://codeforces.com/contest/459/problem/C
loopAny := func(n, low, up int) { // or lows ups []int
vals := make([]int, n)
var f func(int)
f = func(p int) {
if p == n {
// do vals...
return
}
for vals[p] = low; vals[p] <= up; vals[p]++ {
f(p + 1)
}
}
f(0)
}
// 任意子集:从集合 1~n 中不重复地选取任意个元素
// 位运算写法见下面的 loopCollection
// 模板题 https://ac.nowcoder.com/acm/contest/6913/A
chooseAny := func(n int) {
{
cnt := 0
chosen := []int{}
var f func(int)
f = func(p int) {
if p == n+1 {
// do chosen... or just cnt++
cnt++
return
}
// 剪枝:能否继续...
// 不选 p
f(p + 1)
// 选 p
// 剪枝:能否选 p(是否与 chosen 中的元素冲突等)...
chosen = append(chosen, p)
f(p + 1) // 如果可以重复,这里写 f(p)
chosen = chosen[:len(chosen)-1]
}
f(1)
}
{
cnt := 0
used := make([]bool, n+1)
var f func(int)
f = func(p int) {
if p == n+1 {
// do used... or just cnt++
cnt++
return
}
// 剪枝:能否继续...
// 不选 p
f(p + 1)
// 选 p
// 剪枝:能否选 p(是否与 used 中的元素冲突等)...
used[p] = true
f(p + 1)
used[p] = false
}
f(1)
}
}
// 部分子集:从集合 1~n 中不重复地选取至多 m 个元素 (0<=m<=n)
chooseAtMost := func(n, m int) {
chosen := []int{}
var f func(int)
f = func(p int) {
if len(chosen) > m || len(chosen)+n-p+1 < m {
return
}
if p == n+1 {
// do chosen...
return
}
// 不选 p
f(p + 1)
// 选 p
chosen = append(chosen, p)
f(p + 1)
chosen = chosen[:len(chosen)-1]
}
f(1)
}
// 可重复组合
// 以 LC1467/周赛191D 为例 https://leetcode-cn.com/problems/probability-of-a-two-boxes-having-the-same-number-of-distinct-balls/
// 每个数至多可选 upper[i] 个,从中随机选择 m 个(m<=∑upper),求满足题设条件的概率
// 枚举每个数选了多少个,根据乘法原理计算某个组合的个数(例如 upper=[4,3,1],m=4,其中选2个0,2个1就有C(4,2)*C(3,2)种)
// 总数有 C(∑upper,m) 种
searchCombinations := func(upper []int) float64 {
const mx = 48
C := [mx + 1][mx + 1]int{}
for i := 0; i <= mx; i++ {
C[i][0], C[i][i] = 1, 1
for j := 1; j < i; j++ {
C[i][j] = C[i-1][j-1] + C[i-1][j]
}
}
n := len(upper)
sum := 0
for _, v := range upper {
sum += v
}
sum /= 2
okWays := 0
var f func(p, s, cntL, cntR, ways int)
f = func(p, s, cntL, cntR, ways int) {
//if s > sum {
// return
//}
if p == n {
// do...
if s == sum && cntL == cntR {
okWays += ways
}
return
}
for i := 0; i <= upper[p] && s+i <= sum; i++ {
cl, cr := cntL, cntR
if i > 0 {
cl++
}
if i < upper[p] {
cr++
}
f(p+1, s+i, cl, cr, ways*C[upper[p]][i]) // 乘法原理
}
}
f(0, 0, 0, 0, 1)
return float64(okWays) / float64(C[2*sum][sum])
}
// 排列(不能重复)
// 即有 n 个位置,从左往右地枚举每个位置上可能出现的值(值必须在 a 中且不能重复)
// 对比上面的子集搜索,那是对每个位置枚举是否选择(两个分支),而这里每个位置有 n 个分支
// https://www.luogu.com.cn/problem/P1118
// LC1307/周赛169D https://leetcode-cn.com/problems/verbal-arithmetic-puzzle/
searchPermutations := func(a []int) bool {
n := len(a)
used := 0
var f func(p, sum int) bool
f = func(p, sum int) bool {
//if sum > ... { } // 剪枝
if p == n {
// do sum...
return sum == 0
}
// 对每个位置,枚举可能出现的值,跳过已经枚举的值
for i, v := range a {
if used>>i&1 > 0 {
continue
}
used |= 1 << i
// copy sum and do v...
s := sum
s += v
if f(p+1, s) {
//used[i] = false
return true
}
used ^= 1 << i
}
return false
}
return f(0, 0)
}
//
// 生成字符串 s 的所有长度至多为 m 的非空子串(去重,按字典序返回)
// https://codeforces.com/problemset/problem/120/H
genSubStrings := func(s string, m int) []string {
ss := []string{}
var f func(s, sub string)
f = func(s, sub string) {
ss = append(ss, sub)
if len(sub) == m {
return
}
for i, b := range s {
f(s[i+1:], sub+string(b))
}
}
f(s, "")
ss = ss[1:] // 去掉空字符串
sort.Strings(ss)
j := 0
for i := 1; i < len(ss); i++ {
if ss[j] != ss[i] {
j++
ss[j] = ss[i]
}
}
return ss[:j+1]
}
//
// 每个位置独立,枚举 [0,limits[i]] 范围内的数
iterWithLimits := func(limits []int, do func(upp []int) bool) {
n := len(limits)
upp := make([]int, n)
var f func(p int) bool
f = func(p int) bool {
if p == n {
return do(upp)
}
for upp[p] = 0; upp[p] <= limits[p]; upp[p]++ {
if f(p + 1) {
return true
}
}
return false
}
f(0)
}
// 每个位置独立,枚举 [0,limits[i]] 范围内的数,且和为 sum
iterWithLimitsAndSum := func(sum int, limits []int, do func(a []int) bool) {
n := len(limits)
a := make([]int, n)
var f func(int, int) bool
f = func(p, s int) bool {
if s > sum {
return false
}
if p == n {
if s < sum {
return false
}
return do(a)
}
for a[p] = 0; a[p] <= limits[p]; a[p]++ {
if f(p+1, s+a[p]) {
return true
}
}
return false
}
f(0, 0)
}
//
// 从 n 个元素中选择 r 个元素,按字典序生成所有组合,每个组合用下标表示 r <= n
// 由于实现上直接传入了 indexes,所以在 do 中不能修改 ids。若要修改则代码在传入前需要 copy 一份
// 参考 https://docs.python.org/3/library/itertools.html#itertools.combinations
// https://stackoverflow.com/questions/41694722/algorithm-for-itertools-combinations-in-python
combinations := func(n, r int, do func(ids []int) (Break bool)) {
ids := make([]int, r)
for i := range ids {
ids[i] = i
}
if do(ids) {
return
}
for {
i := r - 1
for ; i >= 0; i-- {
if ids[i] != i+n-r {
break
}
}
if i == -1 {
return
}
ids[i]++
for j := i + 1; j < r; j++ {
ids[j] = ids[j-1] + 1
}
if do(ids) {
return
}
}
}
// 从 n 个元素中选择 k 个元素,允许重复选择同一个元素,按字典序生成所有组合,每个组合用下标表示
// 由于实现上直接传入了 indexes,所以在 do 中不能修改 ids。若要修改则代码在传入前需要 copy 一份
// 参考 https://docs.python.org/3/library/itertools.html#itertools.combinations_with_replacement
// https://en.wikipedia.org/wiki/Combination#Number_of_combinations_with_repetition
// 方案数 H(n,k)=C(n+k-1,k) https://oeis.org/A059481
// 相当于长度为 k,元素范围在 [0,n-1] 的非降序列的个数
combinationsWithRepetition := func(n, k int, do func(ids []int) (Break bool)) {
ids := make([]int, k)
if do(ids) {
return
}
for {
i := k - 1
for ; i >= 0; i-- {
if ids[i] != n-1 {
break
}
}
if i == -1 {
return
}
ids[i]++
for j := i + 1; j < k; j++ {
ids[j] = ids[i]
}
if do(ids) {
return
}
}
}
// 从一个长度为 n 的数组中选择 r 个元素,按字典序生成所有排列,每个排列用下标表示 r <= n
// 由于实现上直接传入了 indexes,所以在 do 中不能修改 ids。若要修改则代码在传入前需要 copy 一份
// 参考 https://docs.python.org/3/library/itertools.html#itertools.permutations
permutations := func(n, r int, do func(ids []int) (Break bool)) {
ids := make([]int, n)
for i := range ids {
ids[i] = i
}
if do(ids[:r]) {
return
}
cycles := make([]int, r)
for i := range cycles {
cycles[i] = n - i
}
for {
i := r - 1
for ; i >= 0; i-- {
cycles[i]--
if cycles[i] == 0 {
tmp := ids[i]
copy(ids[i:], ids[i+1:])
ids[n-1] = tmp
cycles[i] = n - i
} else {
j := cycles[i]
ids[i], ids[n-j] = ids[n-j], ids[i]
if do(ids[:r]) {
return
}
break
}
}
if i == -1 {
return
}
}
}
// 生成全排列(不保证字典序,若要用保证字典序的,见 permutations)
// 会修改原数组
// Permute the values at index i to len(arr)-1.
// https://codeforces.com/problemset/problem/910/C
var _permute func([]int, int, func())
_permute = func(a []int, i int, do func()) {
if i == len(a) {
do()
return
}
_permute(a, i+1, do)
for j := i + 1; j < len(a); j++ {
a[i], a[j] = a[j], a[i]
_permute(a, i+1, do)
a[i], a[j] = a[j], a[i]
}
}
permuteAll := func(a []int, do func()) { _permute(a, 0, do) }
reverse := func(a []int) {
for i, n := 0, len(a); i < n/2; i++ {
a[i], a[n-1-i] = a[n-1-i], a[i]
}
}
// 调用完之后
// 返回 true:a 修改为其下一个排列(即比 a 大且字典序最小的排列)
// 返回 false:a 修改为其字典序最小的排列(即 a 排序后的结果)
nextPermutation := func(a []int) bool {
n := len(a)
i := n - 2
for i >= 0 && a[i] >= a[i+1] {
i--
}
defer reverse(a[i+1:])
if i < 0 {
return false
}
j := n - 1
for j >= 0 && a[i] >= a[j] {
j--
}
a[i], a[j] = a[j], a[i]
return true
}
// 康托展开 Cantor Expansion
// 返回所给排列 perm(元素在 [1,n])的字典序名次
// 核心思想:对于第 i 个位置,若该位置的数是未出现在其左侧的数中第 k 大的,那么有 (k−1)×(N−i)! 种方案在该位置上比这个排列小
// https://zh.wikipedia.org/wiki/%E5%BA%B7%E6%89%98%E5%B1%95%E5%BC%80
// https://oi-wiki.org/math/cantor/
// https://www.luogu.com.cn/problem/P5367
// 有重复元素 LC1830/双周赛50D https://leetcode-cn.com/problems/minimum-number-of-operations-to-make-string-sorted/
rankPermutation := func(perm []int) int64 {
const mod int64 = 1e9 + 7
n := len(perm)
F := make([]int64, n)
F[0] = 1
for i := 1; i < n; i++ {
F[i] = F[i-1] * int64(i) % mod
}
tree := make([]int, n+1)
add := func(i, val int) {
for ; i <= n; i += i & -i {
tree[i] += val
}
}
sum := func(i int) (res int) {
for ; i > 0; i &= i - 1 {
res += tree[i]
}
return
}
for i := 1; i <= n; i++ {
add(i, 1)
}
ans := int64(0)
for i, v := range perm {
ans += int64(sum(v-1)) * F[n-1-i] % mod
add(v, -1)
}
ans++ // 从 1 开始的排名
ans %= mod
return ans
}
// 逆康托展开 Inverse Cantor Expansion
// 返回字典序第 k 小的排列,元素范围为 [1,n]
// LC60 https://leetcode-cn.com/problems/permutation-sequence/
kthPermutation := func(n, k int) []int {
F := make([]int, n)
F[0] = 1
for i := 1; i < n; i++ {
F[i] = F[i-1] * i
}
k--
perm := make([]int, n)
valid := make([]int, n+1)
for i := 1; i <= n; i++ {
valid[i] = 1
}
for i := 1; i <= n; i++ {
order := k/F[n-i] + 1
for j := 1; j <= n; j++ {
order -= valid[j]
if order == 0 {
perm = append(perm, j)
valid[j] = 0
break
}
}
k %= F[n-i]
}
return perm
}
//
// 折半枚举/双向搜索 Meet in the middle
// https://codeforces.com/problemset/problem/327/E
// LC805 https://leetcode-cn.com/problems/split-array-with-same-average/
// 折半枚举 - 超大背包问题
// https://atcoder.jp/contests/abc184/tasks/abc184_f
bigKnapsack := func(a []int, size int) (ans int) {
n := len(a)
if n == 1 {
if a[0] > size {
return
}
return a[0]
}
sumW, ws, end := 0, []int{}, n/2
var f func(int)
f = func(p int) {
if p == end {
if sumW <= size {
ws = append(ws, sumW)
}
return
}
f(p + 1)
sumW += a[p]
f(p + 1)
sumW -= a[p]
}
f(0)
l := ws
sort.Ints(l)
// l 去重略
ws, end = nil, n
f(n / 2)
for _, w := range ws {
// <= size-w 的第一个数(因为 l[0]==0 所以 p 一定非负)
p := sort.SearchInts(l, size-w+1) - 1
if l[p]+w > ans {
ans = l[p] + w
}
}
return
}
type pair struct{ w, v int }
bigKnapsack2 := func(items []pair, size int) (ans int) {
n := len(items)
if n == 1 {
if items[0].w > size {
return
}
return items[0].v
}
sumW, sumV, ps, end := 0, 0, []pair{}, n/2
var f func(int)
f = func(p int) {
if p == end {
ps = append(ps, pair{sumW, sumV})
return
}
f(p + 1)
it := items[p]
sumW += it.w
sumV += it.v
f(p + 1)
sumV -= it.v
sumW -= it.w
}
f(0)
// 去重,确保重量越大,价值严格越大
l := ps
nl := 1
for i := 1; i < len(l); i++ {
if l[nl-1].v < l[i].v {
l[nl] = l[i]
nl++
}
}
l = l[:nl]
ps, end = nil, n
f(n / 2)
for _, p := range ps {
// <= size-p.w 的第一个数(因为 l[0].w==0 所以 i 一定非负)
i := sort.Search(len(l), func(i int) bool { return l[i].w+p.w > size }) - 1
if l[i].v+p.v > ans {
ans = l[i].v + p.v
}
}
return
}
//
// 剪枝:
// todo https://blog.csdn.net/weixin_43914593/article/details/104613920 算法竞赛专题解析(7):搜索进阶(2)--剪枝
// A*:
// todo https://blog.csdn.net/weixin_43914593/article/details/104935011 算法竞赛专题解析(9):搜索进阶(4)--A*搜索
// 舞蹈链 Dancing Links
// https://en.wikipedia.org/wiki/Dancing_Links
// TODO: https://oi-wiki.org/search/dlx/
// https://leverimmy.blog.luogu.org/dlx-xiang-xi-jiang-jie
// https://www.luogu.com.cn/blog/Parabola/qian-tan-shen-xian-suan-fa-dlx
// https://www.cnblogs.com/grenet/p/3145800.html
// https://www.cnblogs.com/grenet/p/3163550.html
// 模板题+讲解
// http://hihocoder.com/contest/hiho101/problem/1
// http://hihocoder.com/contest/hiho102/problem/1
// 对抗搜索与 Alpha-Beta 剪枝
// https://www.luogu.com.cn/blog/pks-LOVING/zhun-bei-tou-ri-bao-di-fou-qi-yan-di-blog
_ = []interface{}{
loopAny, chooseAny, chooseAtMost, searchCombinations, searchPermutations,
genSubStrings,
iterWithLimits, iterWithLimitsAndSum,
combinations, combinationsWithRepetition,
permutations, permuteAll, nextPermutation, rankPermutation, kthPermutation,
bigKnapsack, bigKnapsack2,
}
}
/* 枚举
枚举所有 2^n 子集
枚举子集的所有子集
枚举大小为 k 的子集
枚举格点周围(曼哈顿距离、切比雪夫距离)
*/
func loopCollection() {
min := func(a, b int) int {
if a < b {
return a
}
return b
}
max := func(a, b int) int {
if a > b {
return a
}
return b
}
// 枚举 {0,1,...,n-1} 的全部子集
loopSet := func(a []int) {
n := len(a)
f := func(sub int) (res int) {
for i, v := range a {
if sub>>i&1 == 1 {
// do(v)...
_ = v
}
}
return
}
for sub := 0; sub < 1<<n; sub++ {
f(sub)
}
}
// 枚举 set 的全部子集
// 作为结束条件,处理完 0 之后,会有 -1&set == set
loopSubset := func(n, set int) {
// 所有子集
for sub, ok := set, true; ok; ok = sub != set {
// do(sub)...
sub = (sub - 1) & set
}
// 非空子集
for sub := set; sub > 0; sub = (sub - 1) & set {
// do(sub)...
}
// 真子集
for sub := (set - 1) & set; sub != set; sub = (sub - 1) & set {
// do(sub)...
}
// 非空真子集
for sub := (set - 1) & set; sub > 0; sub = (sub - 1) & set {
// do(sub)...
}
{
// EXTRA: 求多个集合(状压)的所有非空子集组成的集合
// https://ac.nowcoder.com/acm/contest/7607/B
has := [1e6 + 1]bool{0: true}
var f func(uint)
f = func(v uint) {
if has[v] {
return
}
has[v] = true
for w := v; w > 0; w &= w - 1 {
f(v &^ (w & -w))
}
}
//for _, v := range a {
// f(v)
//}
}
}
// 枚举 set 的全部超集(父集)ss
loopSuperset := func(n, set int) {
for ss := set; ss < 1<<n; ss = (ss + 1) | set {
// do(ss)...
}
}
// Gosper’s Hack:枚举大小为 n 的集合的大小为 k 的子集(按字典序)
// https://en.wikipedia.org/wiki/Combinatorial_number_system#Applications
// 参考《挑战程序设计竞赛》p.156-158 的实现
// 把除法改成右移 bits.TrailingZeros 可以快好几倍
// 比如在 n 个数中求满足某种性质的最大子集,则可以从 n 开始倒着枚举子集大小,直到找到一个符合性质的子集
// 例题(TS1)https://codingcompetitions.withgoogle.com/codejam/round/0000000000007706/0000000000045875
loopSubsetK := func(a []int, k int) {
n := len(a)
for sub := 1<<k - 1; sub < 1<<n; {
// do(a, sub) ...
lb := sub & -sub
x := sub + lb
//sub = sub&^x/lb>>1 | x
sub = sub&^x>>bits.TrailingZeros(uint(lb))>>1 | x
}
}
// 枚举各个 1 位的另一种方法
// 每次统计尾 0 的个数,然后移除最右侧的 1
// benchmark 了一下,效率比一个个位上去检查是否为 1 要快
{
var mask uint
for ; mask > 0; mask &= mask - 1 {
p := bits.TrailingZeros(mask)
_ = p
}
}
/*
遍历以 (ox, oy) 为中心的曼哈顿距离为 dis 范围内的格点
例如 dis=2 时:
#
# #
# @ #
# #
#
*/
type pair struct{ x, y int }
dir4r := []pair{{-1, 1}, {-1, -1}, {1, -1}, {1, 1}} // 逆时针
loopAroundManhattan := func(n, m, ox, oy, dis int, f func(x, y int)) {
if dis == 0 {
f(ox, oy)
return
}
x, y := ox+dis, oy // 从最右顶点出发,逆时针移动
for _, d := range dir4r {
for k := 0; k < dis; k++ {
if 0 <= x && x < n && 0 <= y && y < m {
f(x, y)
}
x += d.x
y += d.y
}
}
}
// 曼哈顿圈序遍历
// LC1030 https://leetcode-cn.com/problems/matrix-cells-in-distance-order/
loopAllManhattan := func(n, m, ox, oy int, f func(x, y int)) {
f(ox, oy)
maxDist := max(ox, n-1-ox) + max(oy, m-1-oy)
for dis := 1; dis <= maxDist; dis++ {
x, y := ox+dis, oy // 从最右顶点出发,逆时针移动
for _, d := range dir4r {
for k := 0; k < dis; k++ {
if 0 <= x && x < n && 0 <= y && y < m {
f(x, y)
}
x += d.x
y += d.y
}
}
}
}
/*
遍历以 (ox, oy) 为中心的切比雪夫距离为 dis 范围内的格点
#####
# #
# @ #
# #
#####
*/
loopAroundChebyshev := func(n, m, ox, oy, dis int) {
// 上下
for _, x := range []int{ox - dis, ox + dis} {
if 0 <= x && x < n {
for y := max(oy-dis, 0); y <= min(oy+dis, m-1); y++ {
// do ...
}
}
}
// 左右(注意四角已经被上面的循环枚举到了)
for _, y := range []int{oy - dis, oy + dis} {
if 0 <= y && y < m {
for x := max(ox-dis, 0) + 1; x <= min(ox+dis, n-1)-1; x++ {
// do ...
}
}
}
}
// 顺时针遍历矩阵从外向内的第 d 圈(保证不自交)
// LC247B https://leetcode-cn.com/contest/weekly-contest-247/problems/cyclically-rotating-a-grid/
loopAroundD := func(a [][]int, d int) []int {
n, m := len(a), len(a[0])
b := make([]int, 0, (n+m-d*4-2)*2)
for j := d; j < m-d; j++ { // →
b = append(b, a[d][j])
}
for i := d + 1; i < n-d; i++ { // ↓
b = append(b, a[i][m-1-d])
}
for j := m - d - 2; j >= d; j-- { // ←
b = append(b, a[n-1-d][j])
}
for i := n - d - 2; i > d; i-- { // ↑
b = append(b, a[i][d])
}
return b
}
// 第一排在右上,最后一排在左下
// 每排从左上到右下
loopDiagonal := func(n, m int) {
for s := 1; s < n+m; s++ {
l := max(0, m-s)
r := min(m-1, m-s+n-1)
for j := l; j <= r; j++ {
i := s + j - m
_ = i
}
}
}
// 第一排在左上,最后一排在右下
// 每排从左下到右上
loopAntiDiagonal := func(n, m int) {
for s := 0; s < n+m-1; s++ {
l := max(0, s-n+1)
r := min(m-1, s)
for j := l; j <= r; j++ {
i := s - j
_ = i
}
}
}
// 以主对角线为第一列(行),然后向右(下)平移遍历
// 例如
// 0 3 6 9
// 10 1 4 7
// 8 11 2 5
// https://codeforces.com/problemset/problem/1276/C
circleLoopDiagonal := func(n, m int) {
if n <= m {
// 向右平移
for rc := 0; rc < n*m; rc++ {
_c, _r := rc/n, rc%n
i, j := _r, (_c+_r)%m
_, _ = i, j
}
} else {
// 向下平移
for rc := 0; rc < n*m; rc++ {
_r, _c := rc/m, rc%m
i, j := (_r+_c)%n, _c
_, _ = i, j
}
}
}
// 保证边界在范围内且 x0 <= x1 且 y0 <= y1
loopBorder := func(x0, y0, x1, y1 int) {
if y0 == y1 {
for i := x0; i <= x1; i++ {
// do(i, y0) ...
}
return
}
for i := x0; i <= x1; i++ {
for j := y0; j <= y1; {
// do(i, j) ...
if i == x0 || i == x1 {
j++
} else {
j += y1 - y0
}
}
}
}
_ = []interface{}{
loopSet, loopSubset, loopSuperset, loopSubsetK,
loopAroundManhattan, loopAllManhattan, loopAroundChebyshev, loopAroundD,
loopDiagonal, loopAntiDiagonal, circleLoopDiagonal,
loopBorder,
}
}
//
// 网格/矩阵上的搜索
// NOTE: 对于 n*m 的网格图,BFS 最多只占用 O(min(n,m)) 的空间,而 DFS 最多会占用 O(nm) 的空间
// 易错题 https://codeforces.com/problemset/problem/540/C
// 思维转换 LCP31 https://leetcode-cn.com/problems/Db3wC1/
func gridCollection() {
type pair struct{ x, y int }
dir4 := []pair{{-1, 0}, {1, 0}, {0, -1}, {0, 1}} // 上下左右
// 获取网格图的 labelS, labelT 的坐标
getST := func(g [][]byte, labelS, labelT byte) (pair, pair) {
var s, t pair
for i, row := range g {
for j, b := range row {
p := pair{i, j}
if b == labelS {
s = p
} else if b == labelT {
t = p
}
}
}
return s, t
}
// 矩形网格图,返回从起点 (s.x,s.y) 到其余所有可达点的最短距离。'#' 表示无法通过的格子 bfsGridAll 单源最短距离
// https://codeforces.com/contest/1520/problem/G
// https://leetcode-cn.com/problems/k-highest-ranked-items-within-a-price-range/
disAll := func(g [][]byte, sx, sy int) [][]int {
n, m := len(g), len(g[0])