-
Notifications
You must be signed in to change notification settings - Fork 1
/
Primary Controller Code.ino
executable file
·399 lines (361 loc) · 9.12 KB
/
Primary Controller Code.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// Software Serial Library to communicate between the Primary and Secondary Controller.
#include<SoftwareSerial.h>
// To operate Sabertooth Drivers Servo library is used.
#include <Servo.h>
// 10 - RX, 11 - TX
SoftwareSerial s(10, 11);
// Initialize the front left, front right, back left and back right motors.
Servo fr, fl, bl, br;
// forward pwm
int pf = 75;
// reverse pwm
int pb = 105;
// front ultrasonic sensor pins
const int frontEchoPin = A0;
const int frontTriggerPin = A1;
// left ultrasonic sensor pins
const int leftEchoPin = A2;
const int leftTriggerPin = A3;
// right ultrasonic sensor pins
const int rightEchoPin = A4;
const int rightTriggerPin = A5;
// Distance to object which front ultrasonic sensor considers as an obstacle in cms.
volatile float maxFrontDistance = 25.00;
// Variables to record the distance and duration for the ultrasonic sensor array.
volatile float frontDuration, frontDistanceCm, leftDuration, leftDistanceCm, rightDuration, rightDistanceCm;
// Distance to object which right ultrasonic sensor considers as an obstacle in cms.
volatile float maxRightDistance = 15.00;
// Distance to object which left ultrasonic sensor considers as an obstacle in cms.
volatile float maxLeftDistance = 15.00;
void setup()
{
// Serial baud rate to recieve data from NodeMCU
s.begin(115200);
// Bauu rate to match the data input serially
Serial.begin(115200);
// setup the pins as output or input
pinMode(frontEchoPin, INPUT);
pinMode(frontTriggerPin, OUTPUT);
pinMode(leftEchoPin, INPUT);
pinMode(rightEchoPin, INPUT);
pinMode(rightTriggerPin, OUTPUT);
pinMode(leftTriggerPin, OUTPUT);
// Attach the digital pins to the respctive motors
fr.attach(3); fl.attach(2); bl.attach(4); br.attach(5);
// PWM value to set the motor speed as 0
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
void loop()
{
// Write 's' as a notifier to Secondary Controller to send the data.
s.write('s');
if (s.available() >= 0)
{
char drive = s.read();
// Check the data and call the respective functions.
if (drive == 1)
{
Serial.println("Forward");
moveForward();
}
else if (drive == 2)
{
Serial.println("Backward");
moveBackward ();
}
else if (drive == 3)
{
Serial.println("Left");
moveLeft();
}
else if (drive == 4)
{
Serial.println("Right");
moveRight();
}
else if (drive == 5)
{
Serial.println("Forward-right");
forwardright();
}
else if (drive == 6)
{
Serial.println("Backward-right");
backwardright ();
}
else if (drive == 7)
{
Serial.println("Backward-left");
backwardleft ();
}
else if (drive == 8)
{
Serial.println("Forward-left");
forwardleft ();
}
else if (drive == 9)
{
Serial.println("Rotate-left");
turnLeft () ;
}
else if (drive == 10)
{
Serial.println("Rotate-right");
turnRight ();
}
else if (drive == 0)
{
Serial.println("Halt");
stp();
}
}
else
{
stp();
}
}
// Move Forward Function
void moveForward()
{
digitalWrite(frontTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(frontTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(frontTriggerPin, LOW);
frontDuration = pulseIn(frontEchoPin, HIGH);
frontDistanceCm = frontDuration * 10 / 292 / 2;
Serial.println( frontDistanceCm);
if ( frontDistanceCm < maxFrontDistance)
{
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else
{
fr.write(pf);
fl.write(pf);
bl.write(pf);
br.write(pf);
}
// Move backward Function
}
void moveBackward ()
{
fr.write(pb);
fl.write(pb);
bl.write(pb);
br.write(pb);
}
// Move right Fucntion
void moveRight() {
digitalWrite(rightTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, LOW);
rightDuration = pulseIn(rightEchoPin, HIGH);
rightDistanceCm = rightDuration * 10 / 292 / 2;
if (rightDistanceCm < maxRightDistance) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(pb);
fl.write(pf);
bl.write(pb);
br.write(pf);;
}
}
// Move left Function
void moveLeft() {
digitalWrite(leftTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, LOW);
leftDuration = pulseIn(leftEchoPin, HIGH);
leftDistanceCm = leftDuration * 10 / 292 / 2;
Serial.println(leftDistanceCm);
if ( leftDistanceCm < maxLeftDistance) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(pf);
fl.write(pb);
bl.write(pf);
br.write(pb);
}
}
// Move Back Right Function
void backwardright () {
digitalWrite(rightTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, LOW);
rightDuration = pulseIn(rightEchoPin, HIGH);
rightDistanceCm = rightDuration * 10 / 292 / 2;
if (rightDistanceCm < maxRightDistance) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(pb);
fl.write(90);
bl.write(pb);
br.write(90);
}
}
// Move Backward Left Function
void backwardleft () {
digitalWrite(leftTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, LOW);
leftDuration = pulseIn(leftEchoPin, HIGH);
leftDistanceCm = leftDuration * 10 / 292 / 2;
if ( leftDistanceCm < maxLeftDistance) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(90);
fl.write(pb);
bl.write(90);
br.write(pb);
}
}
// Move Forward Right Function
void forwardright () {
digitalWrite(frontTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(frontTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(frontTriggerPin, LOW);
frontDuration = pulseIn(frontEchoPin, HIGH);
frontDistanceCm = frontDuration * 10 / 292 / 2;
digitalWrite(rightTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, LOW);
rightDuration = pulseIn(rightEchoPin, HIGH);
rightDistanceCm = rightDuration * 10 / 292 / 2;
if ( frontDistanceCm < maxFrontDistance && rightDistanceCm < maxRightDistance ) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(90);
fl.write(pf);
bl.write(90);
br.write(pf);
}
}
// Move Forward Left Function
void forwardleft () {
digitalWrite(frontTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(frontTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(frontTriggerPin, LOW);
frontDuration = pulseIn(frontEchoPin, HIGH);
frontDistanceCm = frontDuration * 10 / 292 / 2;
digitalWrite(leftTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, LOW);
leftDuration = pulseIn(leftEchoPin, HIGH);
leftDistanceCm = leftDuration * 10 / 292 / 2;
if ( frontDistanceCm < maxFrontDistance && leftDistanceCm < maxLeftDistance) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(pf);
fl.write(90);
bl.write(pf);
br.write(90);
}
}
// Move Right Function
void turnRight () {
digitalWrite(rightTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(rightTriggerPin, LOW);
rightDuration = pulseIn(rightEchoPin, HIGH);
rightDistanceCm = rightDuration * 10 / 292 / 2;
if ( rightDistanceCm < maxRightDistance ) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(pb);
fl.write(pf);
bl.write(pf);
br.write(pb);
}
}
// Move Left Function
void turnLeft () {
digitalWrite(leftTriggerPin, LOW);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, HIGH);
delayMicroseconds(2);
digitalWrite(leftTriggerPin, LOW);
leftDuration = pulseIn(leftEchoPin, HIGH);
leftDistanceCm = leftDuration * 10 / 292 / 2;
if ( leftDistanceCm < maxLeftDistance) {
Serial.println("st");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}
else {
fr.write(pf);
fl.write(pb);
bl.write(pb);
br.write(pf);
}
}
// Stop Function
void stp() {
Serial.println("i");
fr.write(90);
fl.write(90);
bl.write(87);
br.write(86.5);
}