-
Notifications
You must be signed in to change notification settings - Fork 2
/
data_utils.py
1011 lines (818 loc) · 39.6 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import pickle
import os
import csv # write_carry_dataset_statistics
import pandas as pd # plot_carry_dataset_statistics
import matplotlib.pyplot as plt # plot_carry_dataset_statistics
import random # import_random_sampled_carry_datasets
import config
def create_dir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def get_result_digits(operand_digits, operator, mode='same'):
if mode == 'fit':
if operator == 'add':
result_digits = operand_digits + 1
if operator == 'subtract':
result_digits = operand_digits
if operator == 'multiply':
result_digits = operand_digits * 2
if operator == 'divide':
result_digits = operand_digits
if operator == 'modulo':
result_digits = operand_digits
if mode == 'same':
result_digits = operand_digits * 2 # The maximum result digits
return result_digits
def get_str_bin(int_dec):
'''
Parameters
----------
int_dec: int. a decimal number.
Returns
-------
str_bin: str. the string of int_dec
- If int_dec >=0, then no sign character in str_bin.
- If int_dec < 0, then '-' becomes the first character of str_bin.
'''
if int_dec >= 0:
str_bin = bin(int_dec)[2:]
else:
str_bin = bin(int_dec)[0] + bin(int_dec)[3:]
return str_bin
def get_int_dec(str_bin):
'''
Parameters
----------
str_bin : str. the string of a binary number
Returns
-------
int_dec : int. decimal interger.
'''
int_dec = int(str_bin, 2)
return int_dec
def get_np_bin(str_bin, np_bin_digits):
'''
Parameters
----------
str_bin
Return
------
np_bin: numpy.ndarry. binary number. The smaller index, the higher digit.
'''
assert str_bin[0] != '-'
np_bin = np.zeros((np_bin_digits), dtype=config.np_type()) # Should be initialized as 0.
for i in range(1, len(str_bin)+1):
np_bin[-i] = int(str_bin[-i])
return np_bin
def get_leading_zeros(operand):
'''
Parameters
----------
operand : np.ndarray. 1-dimension. shape==(operand_digits).
Returns
-------
n_leading_zeros : int. The number of leading zeros.
- If operand is [0,0,1,1,0,1], the number of leading zeros is 2.
'''
operand_digits = operand.shape[0]
n_leading_zeros = 0
for i in range(operand_digits):
if operand[i] == 0:
n_leading_zeros = n_leading_zeros + 1
else:
break
return n_leading_zeros
def get_carry_ds_stat_path():
carry_ds_stat_path = '{}/{}'.format(config.dir_data(), config.carry_dataset_statistics_name())
return carry_ds_stat_path
def less_than(operand1, operand2):
'''
Parameters
----------
operand1 : np.ndarray. 1-dimension. shape==(operand_digits).
operand2 : np.ndarray. 1-dimension. shape==(operand_digits).
Returns
-------
is_less_than : bool. operand1 < operand2.
'''
operand_digits = operand1.shape[0]
for i in range(operand_digits):
if operand1[i] > operand2[i]:
return False
if operand1[i] < operand2[i]:
return True
# All same digits
return False
def str_binary_operation(str_operand1, str_operator, str_operand2):
int_dec_operand1 = get_int_dec(str_operand1)
int_dec_operand2 = get_int_dec(str_operand2)
if str_operator in ['add', '+']:
int_dec_result = int_dec_operand1 + int_dec_operand2
if str_operator in ['subtract', '-']:
int_dec_result = int_dec_operand1 - int_dec_operand2
if str_operator in ['multiply', '*']:
int_dec_result = int_dec_operand1 * int_dec_operand2
if str_operator in ['divide', '/', '//']:
int_dec_result = int_dec_operand1 // int_dec_operand2
if str_operator in ['modulo', '%']:
int_dec_result = int_dec_operand1 % int_dec_operand2
str_bin_result = get_str_bin(int_dec_result)
return str_bin_result
def shuffle_io_pairs(l1, l2):
assert len(l1) == len(l2)
p = np.random.permutation(len(l1))
return l1[p], l2[p]
def add_two_digits(digit1, digit2, carry):
'''
Parameters
----------
digit1 : int. digit1 in [0, 1].
digit2 : int. digit2 in [0, 1].
carry : the carry from the lower addtion.
Returns
-------
carry : the carry for the next digit addition.
result : the current digit result of addition.
'''
digit_sum = digit1 + digit2 + carry
if digit_sum == 3:
(carry, result) = (1, 1)
if digit_sum == 2:
(carry, result) = (1, 0)
if digit_sum == 1:
(carry, result) = (0, 1)
if digit_sum == 0:
(carry, result) = (0, 0)
return (carry, result)
def add_two_numbers(operand1, operand2, mode='same'):
'''
Parameters
----------
operand1 : np.dnarray. 1-dimension.
operand2 : np.dnarray. 1-dimension. This should have the same dimension as operand2.
Returns
-------
result : np.dnarray. 1-dimension. The result of addtion.
n_carries : int. The number of carries occurred while addition.
'''
operand_digits = operand1.shape[0]
result_digits = get_result_digits(operand_digits, 'add', mode='fit')
result = np.zeros((result_digits), dtype=config.np_type())
carry = 0
n_carries = 0
for i in range(1, operand_digits + 1):
(carry, digit_result) = add_two_digits(operand1[-i], operand2[-i], carry)
n_carries = n_carries + carry
result[-i] = digit_result
if i == (operand_digits): # Last digit
result[-(i+1)] = carry
# Concatenate in front of the array.
if mode == 'same':
final_result_digits = get_result_digits(operand_digits, 'add', mode='same')
leading_zeros = np.zeros((final_result_digits - result_digits), dtype=config.np_type())
result = np.concatenate((leading_zeros, result))
return (result, n_carries)
def subtract_two_numbers(operand1, operand2, mode='same'):
'''
Parameters
----------
operand1 : np.ndarray. 1-dimension. shape==(operand_digits).
operand2 : np.ndarray. 1-dimension. shape==(operand_digits).
- Always operand1 >= operand2.
Returns
-------
result : np.ndarray. result = operand1 - operand2. 1-D. shape==(operand_digits).
- Beacuse operand1 >= operand2, result >= 0.
n_carries : int. The number of carries that occurred while subtraction.
'''
operand_digits = operand1.shape[0]
result_digits = get_result_digits(operand_digits, 'subtract', mode='fit')
cp_operand1 = np.copy(operand1)
cp_operand2 = np.copy(operand2)
result = np.zeros((result_digits), dtype=config.np_type())
n_carries = 0
for i in range(1, operand_digits + 1):
if cp_operand1[-i] >= cp_operand2[-i]:
result[-i] = cp_operand1[-i] - cp_operand2[-i]
else:
for j in range(i + 1, operand_digits + 1):
n_carries = n_carries + 1
if cp_operand1[-j] == 1:
cp_operand1[-j] = 0
for k in range(i + 1, j):
cp_operand1[-k] = 1
break
result[-i] = 1
# Concatenate in front of the array.
if mode == 'same':
final_result_digits = get_result_digits(operand_digits, 'subtract', mode='same')
leading_zeros = np.zeros((final_result_digits - result_digits), dtype=config.np_type())
result = np.concatenate((leading_zeros, result))
return (result, n_carries)
def multiply_two_numbers(operand1, operand2, mode='same'):
'''
Parameters
----------
operand1 : np.ndarray. 1-dimension. shape==(operand_digits).
operand2 : np.ndarray. 1-dimension. shape==(operand_digits).
Returns
-------
result : np.ndarray. result = operand1 - operand2. 1-D. shape==(operand_digits).
n_carries : int. The number of carries that occurred while multiplication.
'''
operand_digits = operand1.shape[0]
result_digits = get_result_digits(operand_digits, 'multiply', mode='fit')
result = np.zeros((result_digits), dtype=config.np_type()) # To return
carry_buffer = np.zeros((result_digits), dtype=config.np_type()) # To save carries while addition
# The multiplying phase
multiply_result_to_sum = np.zeros((operand_digits, result_digits), dtype=config.np_type())
for i in range(operand_digits):
if operand2[-(i+1)] == 1:
start_index = (result_digits - operand_digits - i)
end_index = (result_digits - i)
multiply_result_to_sum[i, start_index:end_index] = operand1
# The summation and carrying phase
n_carries = 0 # total carries in one multiplication operation.
for i in range(1, result_digits+1):
digit_wise_sum = np.sum(multiply_result_to_sum[:,-i]) + carry_buffer[-i]
carry, remainder = divmod(digit_wise_sum, 2)
n_carries = n_carries + carry
if i < result_digits: # except the last digit
carry_buffer[-(i+1)] = carry
result[-i] = remainder
# Concatenate in front of the array.
if mode == 'same':
final_result_digits = get_result_digits(operand_digits, 'multiply', mode='same')
leading_zeros = np.zeros((final_result_digits - result_digits), dtype=config.np_type())
result = np.concatenate((leading_zeros, result))
return (result, n_carries)
def divide_two_numbers(operand1, operand2, mode='same'):
'''
Parameters
----------
operand1 : np.ndarray. 1-dimension. shape==(operand_digits).
operand2 : np.ndarray. 1-dimension. shape==(operand_digits).
- operand2 must not be zero.
Returns
-------
result : np.ndarray. result = operand1 // operand2. 1-D. shape==(operand_digits)
n_carries : int. The number of carries that occurred while multiplication.
remainder : np.ndarray. shape==(operand_digits).
'''
operand_digits = operand1.shape[0]
result_digits = get_result_digits(operand_digits, 'divide', mode='fit')
result = np.zeros((result_digits), dtype=config.np_type())
leading_zeros = get_leading_zeros(operand2)
valid_operand2_digits = operand_digits - leading_zeros
division_steps = operand_digits - valid_operand2_digits + 1
n_total_carries = 0
for i in range(division_steps):
division_index = valid_operand2_digits + i - 1
division_range = division_index + 1
# Assignment: local_divide_operand1
local_divide_operand1 = np.zeros((division_range), dtype=config.np_type())
if i == 0:
local_divide_operand1 = operand1[:division_range]
else:
local_divide_operand1[:division_index] = local_subtract_result
local_divide_operand1[division_index] = operand1[division_index]
# Assignment: local_divide_operand2
local_divide_operand2 = np.zeros((division_range), dtype=config.np_type())
local_divide_operand2[-valid_operand2_digits:] = operand2[-valid_operand2_digits:]
#local_divide_operand2[-division_range:] = operand2[-division_range:]
# Division: If condition. less_than
# Subtraction: Get a remainder
if less_than(local_divide_operand1, local_divide_operand2):
result[division_index] = 0 # Division result
local_subtract_result = np.copy(local_divide_operand1[:division_range]) # Get the remainder
n_carries = 0
else:
result[division_index] = 1 # Division result
local_subtract_result, n_carries = subtract_two_numbers(local_divide_operand1, local_divide_operand2, mode='fit') # Get the remainder
n_total_carries = n_total_carries + n_carries
remainder = local_subtract_result
# Concatenate in front of the array.
if mode == 'same':
final_result_digits = get_result_digits(operand_digits, 'divide', mode='same')
leading_zeros = np.zeros((final_result_digits - result_digits), dtype=config.np_type())
result = np.concatenate((leading_zeros, result))
return (result, n_carries, remainder)
def modulo_two_numbers(operand1, operand2, mode='same'):
'''
Parameters
----------
operand1 : np.ndarray. 1-dimension. shape==(operand_digits).
operand2 : np.ndarray. 1-dimension. shape==(operand_digits).
- operand2 must not be zero.
Returns
-------
result : np.ndarray. result = operand1 % operand2. 1-D. shape==(operand_digits).
n_carries : int. The number of carries that occurred while multiplication.
remainder : np.ndarray. shape==(operand_digits).
'''
operand_digits = operand1.shape[0]
result_digits = get_result_digits(operand_digits, 'modulo', mode='fit')
_, n_carries, result = divide_two_numbers(operand1, operand2)
# Concatenate in front of the array.
if mode == 'same':
final_result_digits = get_result_digits(operand_digits, 'modulo', mode='same')
leading_zeros = np.zeros((final_result_digits - result_digits), dtype=config.np_type())
result = np.concatenate((leading_zeros, result))
return (result, n_carries)
def operate_two_numbers(operand1, operand2, operator):
'''
Parameters
----------
operand1 : np.ndarray. 1-dimension. shape==(operand_digits).
operand2 : np.ndarray. 1-dimension. shape==(operand_digits).
operator : str. ['add', 'substract', 'multiply', 'divide', 'modulo']
Returns
-------
return_vector : The reult of an operation.
- For division, the size of it will be 3 but the size of the others will be 2.
'''
if operator == 'add':
return_vector = add_two_numbers(operand1, operand2)
if operator == 'subtract':
return_vector = subtract_two_numbers(operand1, operand2)
if operator == 'multiply':
return_vector = multiply_two_numbers(operand1, operand2)
if operator == 'divide':
return_vector = divide_two_numbers(operand1, operand2)
if operator == 'modulo':
return_vector = modulo_two_numbers(operand1, operand2)
return return_vector
def generate_random_datasets(operand_digits):
'''
Parameters
----------
operand_digits: int. the number of the digits of an operand.
Returns
-------
zero_output_dataset: dict.
- zero_output_dataset['input']: numpy.ndarray. shape == (n_operations, operand_digits * 2).
- zero_output_dataset['output']: numpy.ndarray. shape == (n_operations, result_digits).
one_output_dataset: dict.
- one_output_dataset['input']: numpy.ndarray. shape == (n_operations, operand_digits * 2).
- one_output_dataset['output']: numpy.ndarray. shape == (n_operations, result_digits).
random_output_dataset: dict.
- random_output_dataset['input']: numpy.ndarray. shape == (n_operations, operand_digits * 2).
- random_output_dataset['output']: numpy.ndarray. shape == (n_operations, result_digits).
'''
zero_output_dataset = {'input':list(), 'output':list()}
one_output_dataset = {'input':list(), 'output':list()}
fixed_random_output_dataset = {'input':list(), 'output':list()}
random_output_dataset = {'input':list(), 'output':list()}
result_digits = get_result_digits(operand_digits, 'add', mode='same')
# Get a fixed numpy.ndarray binary random integer.
np_bin_fixed_rand_output = get_np_bin(get_str_bin(np.random.randint(2**result_digits)), result_digits).reshape(1,-1)
for dec_op1 in range(2**operand_digits):
for dec_op2 in range(2**operand_digits):
# Get numpy.ndarray binary operands.
np_bin_op1 = get_np_bin(get_str_bin(dec_op1), operand_digits)
np_bin_op2 = get_np_bin(get_str_bin(dec_op2), operand_digits)
# Get a numpy.ndarray binary random integer.
np_bin_rand_output = get_np_bin(get_str_bin(np.random.randint(2**result_digits)), result_digits).reshape(1,-1)
# Append the input of addition.
input = np.concatenate((np_bin_op1, np_bin_op2)).reshape(1,-1)
zero_output_dataset['input'].append(input)
one_output_dataset['input'].append(input)
fixed_random_output_dataset['input'].append(input)
random_output_dataset['input'].append(input)
# Append the output of addition.
zero_output_dataset['output'].append(np.zeros((1, result_digits), dtype=config.np_type()))
one_output_dataset['output'].append(np.ones((1, result_digits), dtype=config.np_type()))
fixed_random_output_dataset['output'].append(np_bin_fixed_rand_output)
random_output_dataset['output'].append(np_bin_rand_output)
# List to one numpy.ndarray
zero_output_dataset['input'] = np.concatenate(zero_output_dataset['input'], axis=0)
zero_output_dataset['output'] = np.concatenate(zero_output_dataset['output'], axis=0)
one_output_dataset['input'] = np.concatenate(one_output_dataset['input'], axis=0)
one_output_dataset['output'] = np.concatenate(one_output_dataset['output'], axis=0)
fixed_random_output_dataset['input'] = np.concatenate(fixed_random_output_dataset['input'], axis=0)
fixed_random_output_dataset['output'] = np.concatenate(fixed_random_output_dataset['output'], axis=0)
random_output_dataset['input'] = np.concatenate(random_output_dataset['input'], axis=0)
random_output_dataset['output'] = np.concatenate(random_output_dataset['output'], axis=0)
# Shuffle the pairs of input and output of op_dataset.
zero_output_dataset['input'], zero_output_dataset['output'] = shuffle_io_pairs(zero_output_dataset['input'], zero_output_dataset['output'])
one_output_dataset['input'], one_output_dataset['output'] = shuffle_io_pairs(one_output_dataset['input'], one_output_dataset['output'])
fixed_random_output_dataset['input'], fixed_random_output_dataset['output'] = shuffle_io_pairs(fixed_random_output_dataset['input'], fixed_random_output_dataset['output'])
random_output_dataset['input'], random_output_dataset['output'] = shuffle_io_pairs(random_output_dataset['input'], random_output_dataset['output'])
return zero_output_dataset, one_output_dataset, fixed_random_output_dataset, random_output_dataset
def generate_datasets(operand_digits, operator):
'''
Parameters
----------
operand_digits: int. the number of the digits of an operand.
operator: str. ['add', 'subtract', 'multiply', 'divide', 'modulo'].
Returns
-------
op_dataset: dict.
- op_dataset['input']: numpy.ndarray. shape == (n_operations, operand_digits * 2).
- op_dataset['output']: numpy.ndarray. shape == (n_operations, result_digits).
carry_datasets: dict.
- carry_datasets[n_carries]['input']: numpy.ndarray. shape == (n_operations, operand_digits * 2).
-- Input dataset for n_carries subtraction.
- carry_datasets[n_carries]['output']: numpy.ndarray. shape == (n_operations, result_digits).
-- Output dataset for n_carries subtraction.
-- result_digits == operand_digits
'''
op_dataset = {'input':list(), 'output':list()}
carry_datasets = dict()
for dec_op1 in range(2**operand_digits):
for dec_op2 in range(2**operand_digits):
# Get numpy.ndarray binary operands.
np_bin_op1 = get_np_bin(get_str_bin(dec_op1), operand_digits)
np_bin_op2 = get_np_bin(get_str_bin(dec_op2), operand_digits)
# Arithemetic operation phase
if operator == 'add':
result, n_carries = add_two_numbers(np_bin_op1, np_bin_op2)
if operator == 'subtract':
if dec_op1 < dec_op2:
continue
result, n_carries = subtract_two_numbers(np_bin_op1, np_bin_op2)
if operator == 'multiply':
result, n_carries = multiply_two_numbers(np_bin_op1, np_bin_op2)
if operator == 'divide':
if dec_op2 == 0:
continue
result, n_carries, _ = divide_two_numbers(np_bin_op1, np_bin_op2)
if operator == 'modulo':
if dec_op2 == 0:
continue
result, n_carries = modulo_two_numbers(np_bin_op1, np_bin_op2)
# Create a list to store operations
if n_carries not in carry_datasets:
carry_datasets[n_carries] = dict()
carry_datasets[n_carries]['input'] = list()
carry_datasets[n_carries]['output'] = list()
# Append the input of addition.
input = np.concatenate((np_bin_op1, np_bin_op2)).reshape(1,-1)
op_dataset['input'].append(input)
carry_datasets[n_carries]['input'].append(input)
# Append the output of addition.
output = result.reshape(1,-1)
op_dataset['output'].append(output)
carry_datasets[n_carries]['output'].append(output)
# List to one numpy.ndarray
op_dataset['input'] = np.concatenate(op_dataset['input'], axis=0)
op_dataset['output'] = np.concatenate(op_dataset['output'], axis=0)
for key in carry_datasets.keys():
carry_datasets[key]['input'] = np.concatenate(carry_datasets[key]['input'], axis=0)
carry_datasets[key]['output'] = np.concatenate(carry_datasets[key]['output'], axis=0)
# Shuffle the pairs of input and output of op_dataset.
op_dataset['input'], op_dataset['output'] = shuffle_io_pairs(op_dataset['input'], op_dataset['output'])
return op_dataset, carry_datasets
def generate_and_save_all_datasets():
for operator in config.operators_list():
for operand_digits in config.operand_digits_list():
op_dataset, carry_datasets = generate_datasets(operand_digits, operator)
save_op_dataset(op_dataset, operand_digits, operator)
save_carry_datasets(carry_datasets, operand_digits, operator)
for operand_digits in config.operand_digits_list():
random_datasets = generate_random_datasets(operand_digits)
save_random_datasets(random_datasets, operand_digits)
def save_op_dataset(op_dataset, operand_digits, operator):
save_dir = 'data/{}-bit/{}'.format(operand_digits, operator)
create_dir(save_dir)
save_path = '{}/op_dataset.pickle'.format(save_dir)
with open(save_path, 'wb') as f:
pickle.dump(op_dataset, f)
print("Saved in '{}'.".format(save_path))
def save_carry_datasets(carry_datasets, operand_digits, operator):
save_dir = 'data/{}-bit/{}'.format(operand_digits, operator)
create_dir(save_dir)
save_path = '{}/carry_datasets.pickle'.format(save_dir)
with open(save_path, 'wb') as f:
pickle.dump(carry_datasets, f)
print("Saved in '{}'.".format(save_path))
def save_random_datasets(random_datasets, operand_digits):
(zero_output_dataset, one_output_dataset,
fixed_random_output_dataset,
random_output_dataset) = random_datasets
# zero_output_dataset
save_dir = '{}/{}-bit/{}'.format(config.dir_data(), operand_digits, 'zero')
create_dir(save_dir)
save_path = '{}/op_dataset.pickle'.format(save_dir)
with open(save_path, 'wb') as f:
pickle.dump(zero_output_dataset, f)
print("Saved in '{}'.".format(save_path))
# one_output_dataset
save_dir = '{}/{}-bit/{}'.format(config.dir_data(), operand_digits, 'one')
create_dir(save_dir)
save_path = '{}/op_dataset.pickle'.format(save_dir)
with open(save_path, 'wb') as f:
pickle.dump(one_output_dataset, f)
print("Saved in '{}'.".format(save_path))
# fixed_random_output_dataset
save_dir = '{}/{}-bit/{}'.format(config.dir_data(), operand_digits, 'fixed_random')
create_dir(save_dir)
save_path = '{}/op_dataset.pickle'.format(save_dir)
with open(save_path, 'wb') as f:
pickle.dump(fixed_random_output_dataset, f)
print("Saved in '{}'.".format(save_path))
# random_output_dataset
save_dir = '{}/{}-bit/{}'.format(config.dir_data(), operand_digits, 'random')
create_dir(save_dir)
save_path = '{}/op_dataset.pickle'.format(save_dir)
with open(save_path, 'wb') as f:
pickle.dump(random_output_dataset, f)
print("Saved in '{}'.".format(save_path))
def print_carry_datasets_info(carry_datasets):
data_len_list = list()
for key in carry_datasets.keys():
data_len_list.append(carry_datasets[key]['input'].shape[0])
total_operations = sum(data_len_list)
for key in carry_datasets.keys():
print('{}-carry dataset'.format(key))
print('- #input dimension: {}'.format(carry_datasets[key]['input'].shape[1]))
print('- #output dimension: {}'.format(carry_datasets[key]['output'].shape[1]))
print('- #operations: {}'.format(carry_datasets[key]['input'].shape[0]))
print('- Perceptage of {}-carry operations: {} %'.format(
key, (carry_datasets[key]['input'].shape[0] / total_operations * 100)))
def get_carry_dataset_info_list(carry_datasets, operator):
data_len_list = list()
for key in carry_datasets.keys():
data_len_list.append(carry_datasets[key]['input'].shape[0])
total_operations = sum(data_len_list)
carry_dataset_info_list = list()
for n_carries in carry_datasets.keys():
carry_dataset_info = dict()
carry_dataset_info['operator'] = operator
carry_dataset_info['carries'] = n_carries
carry_dataset_info['operand digits'] = carry_datasets[n_carries]['input'].shape[1] // 2
carry_dataset_info['input dimension'] = carry_datasets[n_carries]['input'].shape[1]
carry_dataset_info['output dimension'] = carry_datasets[n_carries]['output'].shape[1]
carry_dataset_info['carry operations'] = carry_datasets[n_carries]['input'].shape[0]
carry_dataset_info['total operations'] = total_operations
carry_dataset_info['carry percentage'] = (carry_datasets[n_carries]['input'].shape[0] / total_operations * 100)
carry_dataset_info_list.append(carry_dataset_info)
return carry_dataset_info_list
def write_carry_dataset_statistics():
carry_dataset_info_list = list()
csv_file_path = get_carry_ds_stat_path()
create_dir(config.dir_data())
for operator in config.operators_list():
for operand_digits in config.operand_digits_list():
carry_datasets = generate_datasets(operand_digits, operator)
carry_dataset_info_list = carry_dataset_info_list + get_carry_dataset_info_list(carry_datasets, operator)
with open(csv_file_path, mode='w') as csv_file:
fieldnames = ['operator', 'operand digits',
'input dimension', 'output dimension', 'total operations',
'carries', 'carry operations', 'carry percentage']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for carry_dataset_info in carry_dataset_info_list:
writer.writerow(carry_dataset_info)
print('{} saved!'.format(csv_file_path))
def plot_carry_dataset_statistics(mode='save', file_format='svg'):
df_carry_ds_stat = pd.read_csv(get_carry_ds_stat_path())
df_carry_ds_stat = df_carry_ds_stat[['operator', 'operand digits', 'carries', 'carry percentage']]
for operand_digits in config.operand_digits_list():
plt.title('Percentage of operations by required carries ({}-digit operand)'.format(operand_digits))
plt.xlabel('Carries')
plt.ylabel('Percentage (%)')
plt.grid(axis='y')
plt.yticks(np.arange(0, 101, step=10))
plt.ylim(0, 101)
for operator in config.operators_list():
if operator == 'modulo':
break
if operator == 'divide':
operator_label = 'divide/modulo'
else:
operator_label = operator
df = df_carry_ds_stat.loc[(df_carry_ds_stat['operator'] == operator) & (df_carry_ds_stat['operand digits'] == operand_digits)]
df = df[['carries', 'carry percentage']]
plt.plot(df['carries'], df['carry percentage'], ':o', label=operator_label)
#plt.bar(df['carries'], df['carry percentage'], label=operator)
plt.legend()
if mode == 'show':
plt.show()
if mode == 'save':
create_dir(config.dir_plot_fig())
plot_fig_path = '{}/carry_dataset_statistics_{}-digit_operand.{}'.format(config.dir_plot_fig(), operand_digits, file_format)
plt.savefig(plot_fig_path)
print('{} saved!'.format(plot_fig_path))
plt.clf()
def import_op_dataset(operator, operand_digits, train_ratio, dev_ratio, test_ratio):
# Path of op_dataset
import_path = '{}/{}-bit/{}/op_dataset.pickle'.format(config.dir_data(), operand_digits, operator)
# Import the op_dataset
with open(import_path, 'rb') as f:
op_dataset = pickle.load(f)
# Dataset size
ds_size = op_dataset['input'].shape[0]
# Make a training set.
train_end_index = int(ds_size * train_ratio)
input_train = op_dataset['input'][:train_end_index,:]
target_train = op_dataset['output'][:train_end_index,:]
# Make a development set.
dev_end_index = int(ds_size * (train_ratio + dev_ratio))
if dev_ratio != 0:
input_dev = op_dataset['input'][:dev_end_index,:]
target_dev = op_dataset['output'][:dev_end_index,:]
else:
input_dev = None
target_dev = None
# Maek a test set.
input_test = op_dataset['input'][dev_end_index:,:]
target_test = op_dataset['output'][dev_end_index:,:]
return (input_train, input_dev, input_test,
target_train, target_dev, target_test)
def import_carry_datasets(operand_digits, operator):
'''
Parameters
----------
operand_digits: int. The number of digits of an operand.
operantor: str. one of ['add', 'substract', 'multiply', 'divide', 'modulo']
Returns
-------
carry_datasets: dict.
- carry_datasets[n_carries]['input']: shape == (n_operations, input_dim).
- carry_datasets[n_carries]['output']: shape == (n_operations, output_dim).
'''
import_path = 'data/{}-bit/{}/carry_datasets.pickle'.format(operand_digits, operator)
with open(import_path, 'rb') as f:
carry_datasets = pickle.load(f)
#print("Imported from '{}'.".format(import_path))
return carry_datasets
def import_random_sampled_carry_datasets(operand_digits, operator, n_samples):
'''
"Import carry datasets that `n_samples` operations are sampled from each carry dataset."
Parameters
----------
operand_digits: int. The number of digits of an operand.
operantor: str. one of ['add', 'substract', 'multiply', 'divide', 'modulo'].
n_samples : int. The number of operations to sample from each carry.
Returns
-------
carry_datasets : dict. Carry datasets that `n_samples` operations are sampled from each carry dataset.
- carry_datasets[n_carries]['input']: shape == (n_samples, input_dim) or (n_operations, input_dim).
- carry_datasets[n_carries]['output']: shape == (n_samples, output_dim) or (n_operations, output_dim).
- If `n_samples` > n_operations in a carry dataset, then import all operations in it.
'''
carry_datasets = import_carry_datasets(operand_digits, operator)
for n_carries in carry_datasets.keys():
n_operations = carry_datasets[n_carries]['input'].shape[0]
if n_samples > n_operations:
sampled_indexes = random.sample(range(n_operations), n_operations)
else:
sampled_indexes = random.sample(range(n_operations), n_samples)
carry_datasets[n_carries]['input'] = carry_datasets[n_carries]['input'][sampled_indexes,:]
carry_datasets[n_carries]['output'] = carry_datasets[n_carries]['output'][sampled_indexes,:]
return carry_datasets
def test_func_add_two_numbers():
is_all_correct = True
for operand_digits in config.operand_digits_list():
# varying part
result_digits = get_result_digits(operand_digits, 'add')
for dec_op1 in range(2**operand_digits):
for dec_op2 in range(2**operand_digits):
# varying part
bin_result = get_str_bin(dec_op1 + dec_op2)
np_bin_result = get_np_bin(bin_result, result_digits)
np_bin_op1 = get_np_bin(get_str_bin(dec_op1), operand_digits)
np_bin_op2 = get_np_bin(get_str_bin(dec_op2), operand_digits)
np_bin_result_algo, _ = add_two_numbers(np_bin_op1, np_bin_op2)
is_equal = np.array_equal(np_bin_result, np_bin_result_algo)
is_all_correct = is_all_correct and is_equal
return is_all_correct
def test_func_subtract_two_numbers():
is_all_correct = True
for operand_digits in config.operand_digits_list():
# varying part
result_digits = get_result_digits(operand_digits, 'subtract')
for int_dec_operand1 in range(2**operand_digits):
for int_dec_operand2 in range(2**operand_digits):
if int_dec_operand1 >= int_dec_operand2: # Only these cases are dealth with.
# varying part
bin_result = get_str_bin(int_dec_operand1 - int_dec_operand2)
np_result = get_np_bin(bin_result, result_digits)
np_operand1 = get_np_bin(get_str_bin(int_dec_operand1), operand_digits)
np_operand2 = get_np_bin(get_str_bin(int_dec_operand2), operand_digits)
np_bin_result_algo, _ = subtract_two_numbers(np_operand1, np_operand2)
is_equal = np.array_equal(np_result, np_bin_result_algo)
is_all_correct = is_all_correct and is_equal
return is_all_correct
def test_func_multiply_two_numbers():
is_all_correct = True
for operand_digits in config.operand_digits_list():
# varying part
result_digits = get_result_digits(operand_digits, 'multiply')
for int_dec_operand1 in range(2**operand_digits):
for int_dec_operand2 in range(2**operand_digits):
# varying part
bin_result = get_str_bin(int_dec_operand1 * int_dec_operand2)
np_result = get_np_bin(bin_result, result_digits)
np_operand1 = get_np_bin(get_str_bin(int_dec_operand1), operand_digits)
np_operand2 = get_np_bin(get_str_bin(int_dec_operand2), operand_digits)
np_bin_result_algo, _ = multiply_two_numbers(np_operand1, np_operand2)
is_equal = np.array_equal(np_result, np_bin_result_algo)
is_all_correct = is_all_correct and is_equal
return is_all_correct
def test_func_divide_two_numbers():
is_all_correct = True
for operand_digits in config.operand_digits_list():
# varying part
result_digits = get_result_digits(operand_digits, 'divide')
for int_dec_operand1 in range(2**operand_digits):
for int_dec_operand2 in range(1, 2**operand_digits): # Exclude `int_dec_operand2 = 0`
# varying part
bin_result = get_str_bin(int_dec_operand1 // int_dec_operand2)
np_result = get_np_bin(bin_result, result_digits)
np_operand1 = get_np_bin(get_str_bin(int_dec_operand1), operand_digits)
np_operand2 = get_np_bin(get_str_bin(int_dec_operand2), operand_digits)
np_bin_result_algo, _, _ = divide_two_numbers(np_operand1, np_operand2)
is_equal = np.array_equal(np_result, np_bin_result_algo)
is_all_correct = is_all_correct and is_equal
return is_all_correct
def test_func_modulo_two_numbers():
is_all_correct = True
for operand_digits in config.operand_digits_list():
# varying part
result_digits = get_result_digits(operand_digits, 'modulo')
for int_dec_operand1 in range(2**operand_digits):
for int_dec_operand2 in range(1, 2**operand_digits): # Exclude `int_dec_operand2 = 0`
# varying part
bin_result = get_str_bin(int_dec_operand1 % int_dec_operand2)
np_result = get_np_bin(bin_result, result_digits)
np_operand1 = get_np_bin(get_str_bin(int_dec_operand1), operand_digits)
np_operand2 = get_np_bin(get_str_bin(int_dec_operand2), operand_digits)
np_bin_result_algo, _ = modulo_two_numbers(np_operand1, np_operand2)
is_equal = np.array_equal(np_result, np_bin_result_algo)
is_all_correct = is_all_correct and is_equal
return is_all_correct
def test_multiply_symmetric_carries():
'''
Purpose : To test whether the number of carries while multipication is same for a * b and b * a.
Result : The number of carries is always same for a * b and b * a.
'''
is_all_symmetric = True
for operand_digits in config.operand_digits_list():
for int_dec_operand1 in range(2**operand_digits):
for int_dec_operand2 in range(2**operand_digits):
operand1 = get_np_bin(get_str_bin(int_dec_operand1), operand_digits)
operand2 = get_np_bin(get_str_bin(int_dec_operand2), operand_digits)
result1, _ = multiply_two_numbers(operand1, operand2)
result2, _ = multiply_two_numbers(operand2, operand1)
is_equal = np.array_equal(result1, result2)
is_all_symmetric = is_all_symmetric and is_equal
return is_all_symmetric
def test_import_random_sampled_carry_datasets(n_samples=10):
'''
"To test the function `import_random_sampled_carry_datasets`"
'''
is_all_correct = True
for operand_digits in config.operand_digits_list():
for operator in config.operators_list():
carry_datasets = import_random_sampled_carry_datasets(operand_digits, operator, n_samples)
for n_carries in carry_datasets.keys():
n_operations = carry_datasets[n_carries]['input'].shape[0]
for i_operation in range(n_operations):
operand1 = carry_datasets[n_carries]['input'][i_operation, :operand_digits]
operand2 = carry_datasets[n_carries]['input'][i_operation, operand_digits:]
result = carry_datasets[n_carries]['output'][i_operation, :]
result_by_computing = operate_two_numbers(operand1, operand2, operator)[0] # Get the first element
is_equal = np.array_equal(result, result_by_computing)
if not is_equal:
print(operand1)
print(operand2)
print(result)
print(result_by_computing)
print('================')
is_all_correct = is_all_correct and is_equal
return is_all_correct
### OLD
def import_data(operator, input_bits, mode=''):
'''
operator: 'add', 'subtract', 'multiply', 'divide', 'modulo'
'''
dir_data_request = '{}/{}-bit/{}'.format(config.dir_data(), input_bits, operator)
input_train_path = '{}/input_train.pickle'.format(dir_data_request)
input_dev_path = '{}/input_dev.pickle'.format(dir_data_request)
input_test_path = '{}/input_test.pickle'.format(dir_data_request)
output_train_path = '{}/output_train.pickle'.format(dir_data_request)
output_dev_path = '{}/output_dev.pickle'.format(dir_data_request)
output_test_path = '{}/output_test.pickle'.format(dir_data_request)
with open(input_train_path, 'rb') as f:
input_train = pickle.load(f)
#print('Imported from {}.'.format(input_train_path))
with open(input_dev_path, 'rb') as f:
input_dev = pickle.load(f)
#print('Imported from {}.'.format(input_dev_path))
with open(input_test_path, 'rb') as f:
input_test = pickle.load(f)
#print('Imported from {}.'.format(input_test_path))
with open(output_train_path, 'rb') as f: