forked from plasma-umass/Mesh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
global_heap.h
379 lines (287 loc) · 10.3 KB
/
global_heap.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright 2019 The Mesh Authors. All rights reserved.
// Use of this source code is governed by the Apache License,
// Version 2.0, that can be found in the LICENSE file.
#pragma once
#ifndef MESH__GLOBAL_HEAP_H
#define MESH__GLOBAL_HEAP_H
#include <algorithm>
#include <mutex>
#include "binned_tracker.h"
#include "internal.h"
#include "meshable_arena.h"
#include "mini_heap.h"
#include "heaplayers.h"
using namespace HL;
namespace mesh {
class GlobalHeapStats {
public:
atomic_size_t meshCount;
size_t mhFreeCount;
size_t mhAllocCount;
size_t mhHighWaterMark;
};
class GlobalHeap : public MeshableArena {
private:
DISALLOW_COPY_AND_ASSIGN(GlobalHeap);
typedef MeshableArena Super;
static_assert(HL::gcd<MmapHeap::Alignment, Alignment>::value == Alignment,
"expected MmapHeap to have 16-byte alignment");
struct MeshArguments {
GlobalHeap *instance;
internal::vector<std::pair<MiniHeap *, MiniHeap *>> mergeSets;
};
public:
enum { Alignment = 16 };
GlobalHeap() : Super(), _maxObjectSize(SizeMap::ByteSizeForClass(kNumBins - 1)), _lastMesh{time::now()} {
}
inline void dumpStrings() const {
lock_guard<mutex> lock(_miniheapLock);
for (size_t i = 0; i < kNumBins; i++) {
_littleheaps[i].printOccupancy();
}
}
inline void flushAllBins() {
for (size_t sizeClass = 0; sizeClass < kNumBins; sizeClass++) {
flushBinLocked(sizeClass);
}
}
void scavenge(bool force = false) {
lock_guard<mutex> lock(_miniheapLock);
Super::scavenge(force);
}
void dumpStats(int level, bool beDetailed) const;
// must be called with exclusive _mhRWLock held
inline MiniHeap *ATTRIBUTE_ALWAYS_INLINE allocMiniheapLocked(int sizeClass, size_t pageCount, size_t objectCount,
size_t objectSize, size_t pageAlignment = 1) {
d_assert(0 < pageCount);
void *buf = _mhAllocator.alloc();
d_assert(buf != nullptr);
// allocate out of the arena
Span span{0, 0};
char *spanBegin = Super::pageAlloc(span, pageCount, pageAlignment);
d_assert(spanBegin != nullptr);
d_assert((reinterpret_cast<uintptr_t>(spanBegin) / kPageSize) % pageAlignment == 0);
const auto miniheapID = MiniHeapID{_mhAllocator.offsetFor(buf)};
Super::trackMiniHeap(span, miniheapID);
MiniHeap *mh = new (buf) MiniHeap(arenaBegin(), span, objectCount, objectSize);
if (sizeClass >= 0) {
trackMiniheapLocked(mh);
}
_miniheapCount++;
_stats.mhAllocCount++;
_stats.mhHighWaterMark = max(_miniheapCount, _stats.mhHighWaterMark);
return mh;
}
inline void *pageAlignedAlloc(size_t pageAlignment, size_t pageCount) {
lock_guard<mutex> lock(_miniheapLock);
MiniHeap *mh = allocMiniheapLocked(-1, pageCount, 1, pageCount * kPageSize, pageAlignment);
d_assert(mh->maxCount() == 1);
d_assert(mh->spanSize() == pageCount * kPageSize);
// d_assert(mh->objectSize() == pageCount * kPageSize);
void *ptr = mh->mallocAt(arenaBegin(), 0);
return ptr;
}
inline void releaseMiniheapLocked(MiniHeap *mh, int sizeClass) {
// ensure this flag is always set with the miniheap lock held
mh->unsetAttached();
_littleheaps[sizeClass].postFree(mh, mh->inUseCount());
}
template <uint32_t Size>
inline void releaseMiniheaps(FixedArray<MiniHeap, Size> &miniheaps) {
if (miniheaps.size() == 0) {
return;
}
lock_guard<mutex> lock(_miniheapLock);
for (auto mh : miniheaps) {
releaseMiniheapLocked(mh, mh->sizeClass());
}
miniheaps.clear();
}
template <uint32_t Size>
inline void allocSmallMiniheaps(int sizeClass, uint32_t objectSize, FixedArray<MiniHeap, Size> &miniheaps,
pid_t current) {
lock_guard<mutex> lock(_miniheapLock);
d_assert(sizeClass >= 0);
for (MiniHeap *oldMH : miniheaps) {
releaseMiniheapLocked(oldMH, sizeClass);
}
miniheaps.clear();
d_assert(objectSize <= _maxObjectSize);
#ifndef NDEBUG
const size_t classMaxSize = SizeMap::ByteSizeForClass(sizeClass);
d_assert_msg(objectSize == classMaxSize, "sz(%zu) shouldn't be greater than %zu (class %d)", objectSize,
classMaxSize, sizeClass);
#endif
d_assert(sizeClass >= 0);
d_assert(sizeClass < kNumBins);
d_assert(miniheaps.size() == 0);
// check our bins for a miniheap to reuse
auto bytesFree = _littleheaps[sizeClass].selectForReuse(miniheaps, current);
if (bytesFree >= kMiniheapRefillGoalSize || miniheaps.full()) {
return;
}
// if we have objects bigger than the size of a page, allocate
// multiple pages to amortize the cost of creating a
// miniheap/globally locking the heap. For example, asking for
// 2048 byte objects would allocate 4 4KB pages.
const size_t objectCount = max(kPageSize / objectSize, kMinStringLen);
const size_t pageCount = PageCount(objectSize * objectCount);
while (bytesFree < kMiniheapRefillGoalSize && !miniheaps.full()) {
auto mh = allocMiniheapLocked(sizeClass, pageCount, objectCount, objectSize);
d_assert(!mh->isAttached());
mh->setAttached(current);
miniheaps.append(mh);
bytesFree += mh->bytesFree();
}
return;
}
// large, page-multiple allocations
void *ATTRIBUTE_NEVER_INLINE malloc(size_t sz);
inline MiniHeap *ATTRIBUTE_ALWAYS_INLINE miniheapFor(const void *ptr) const {
auto mh = reinterpret_cast<MiniHeap *>(Super::lookupMiniheap(ptr));
return mh;
}
inline MiniHeap *ATTRIBUTE_ALWAYS_INLINE miniheapForID(const MiniHeapID id) const {
auto mh = reinterpret_cast<MiniHeap *>(_mhAllocator.ptrFromOffset(id.value()));
__builtin_prefetch(mh, 1, 2);
return mh;
}
inline MiniHeapID miniheapIDFor(const MiniHeap *mh) const {
return MiniHeapID{_mhAllocator.offsetFor(mh)};
}
void trackMiniheapLocked(MiniHeap *mh) {
_littleheaps[mh->sizeClass()].add(mh);
}
void untrackMiniheapLocked(MiniHeap *mh) {
_stats.mhAllocCount -= 1;
_littleheaps[mh->sizeClass()].remove(mh);
}
void freeFor(MiniHeap *mh, void *ptr);
// called with lock held
void freeMiniheapAfterMeshLocked(MiniHeap *mh, bool untrack = true) {
// don't untrack a meshed miniheap -- it has already been untracked
if (untrack && !mh->isMeshed()) {
untrackMiniheapLocked(mh);
}
mh->MiniHeap::~MiniHeap();
// memset(reinterpret_cast<char *>(mh), 0x77, sizeof(MiniHeap));
_mhAllocator.free(mh);
_miniheapCount--;
}
void freeMiniheap(MiniHeap *&mh, bool untrack = true) {
lock_guard<mutex> lock(_miniheapLock);
freeMiniheapLocked(mh, untrack);
}
void freeMiniheapLocked(MiniHeap *&mh, bool untrack) {
const auto spanSize = mh->spanSize();
MiniHeap *toFree[kMaxMeshes];
size_t last = 0;
memset(toFree, 0, sizeof(*toFree) * kMaxMeshes);
// avoid use after frees while freeing
mh->forEachMeshed([&](MiniHeap *mh) {
toFree[last++] = mh;
return false;
});
for (size_t i = 0; i < last; i++) {
MiniHeap *mh = toFree[i];
const bool isMeshed = mh->isMeshed();
const auto type = isMeshed ? internal::PageType::Meshed : internal::PageType::Dirty;
Super::free(reinterpret_cast<void *>(mh->getSpanStart(arenaBegin())), spanSize, type);
_stats.mhFreeCount++;
freeMiniheapAfterMeshLocked(mh, untrack);
}
mh = nullptr;
}
inline void flushBinLocked(size_t sizeClass) {
auto emptyMiniheaps = _littleheaps[sizeClass].getFreeMiniheaps();
for (size_t i = 0; i < emptyMiniheaps.size(); i++) {
freeMiniheapLocked(emptyMiniheaps[i], false);
}
}
void ATTRIBUTE_NEVER_INLINE free(void *ptr);
inline size_t getSize(void *ptr) const {
if (unlikely(ptr == nullptr))
return 0;
lock_guard<mutex> lock(_miniheapLock);
auto mh = miniheapFor(ptr);
if (likely(mh)) {
return mh->objectSize();
} else {
return 0;
}
}
int mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
size_t getAllocatedMiniheapCount() const {
lock_guard<mutex> lock(_miniheapLock);
return _miniheapCount;
}
void setMeshPeriodMs(std::chrono::milliseconds period) {
_meshPeriodMs = period;
}
void lock() {
_miniheapLock.lock();
// internal::Heap().lock();
}
void unlock() {
// internal::Heap().unlock();
_miniheapLock.unlock();
}
// PUBLIC ONLY FOR TESTING
// after call to meshLocked() completes src is a nullptr
void ATTRIBUTE_NEVER_INLINE meshLocked(MiniHeap *dst, MiniHeap *&src);
inline void ATTRIBUTE_ALWAYS_INLINE maybeMesh() {
if (!kMeshingEnabled) {
return;
}
if (_meshPeriod == 0) {
return;
}
if (_meshPeriodMs == kZeroMs) {
return;
}
const auto now = time::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(now - _lastMesh);
if (likely(duration < _meshPeriodMs)) {
return;
}
lock_guard<mutex> lock(_miniheapLock);
{
// ensure if two threads tried to grab the mesh lock at the same
// time, the second one bows out gracefully without meshing
// twice in a row.
const auto lockedNow = time::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(lockedNow - _lastMesh);
if (unlikely(duration < _meshPeriodMs)) {
return;
}
}
_lastMesh = now;
meshAllSizeClasses();
}
inline bool okToProceed(void *ptr) const {
lock_guard<mutex> lock(_miniheapLock);
if (ptr == nullptr)
return false;
return miniheapFor(ptr) != nullptr;
}
inline internal::vector<MiniHeap *> meshingCandidates(int sizeClass) const {
return _littleheaps[sizeClass].meshingCandidates(kOccupancyCutoff);
}
private:
// check for meshes in all size classes -- must be called LOCKED
void meshAllSizeClasses();
const size_t _maxObjectSize;
atomic_size_t _lastMeshEffective{0};
atomic_size_t _meshPeriod{kDefaultMeshPeriod};
// always accessed with the mhRWLock exclusively locked
size_t _miniheapCount{0};
BinnedTracker _littleheaps[kNumBins];
mutable mutex _miniheapLock{};
GlobalHeapStats _stats{};
std::chrono::milliseconds _meshPeriodMs{kMeshPeriodMs};
// XXX: should be atomic, but has exception spec?
time::time_point _lastMesh;
};
} // namespace mesh
#endif // MESH__GLOBAL_HEAP_H