-
-
Notifications
You must be signed in to change notification settings - Fork 9
Information Criteria
Simone Vazzoler edited this page Apr 24, 2017
·
3 revisions
In the package there is the possibility to perform model selection (i.e. the VAR order) using three information criteria: AIC, BIC and Hannan-Quinn.
As an example we generate a VAR(3) model
set.seed(42)
sim <- simulateVAR(N = 30, p = 3, sparsity = 0.15)
and then we estimate four different models on the same dataset.
fit1 <- fitVAR(sim$series, p=1, foldsIDs=TRUE)
fit2 <- fitVAR(sim$series, p=2, foldsIDs=TRUE)
fit3 <- fitVAR(sim$series, p=3, foldsIDs=TRUE)
fit4 <- fitVAR(sim$series, p=4, foldsIDs=TRUE)
We call the function informCrit()
passing as argument a list containing all the fitted models.
informCrit(list(fit1,fit2,fit3,fit4))
AIC BIC HannanQuinn
1 7.648623 19.1004142 12.25763398
2 -7.086968 10.6893662 0.06748605
3 -16.673240 -1.3055841 -10.48820792
4 -15.957483 0.7201561 -9.24522116
sparsevar
package wiki