-
Notifications
You must be signed in to change notification settings - Fork 0
/
staple_2020_scorer.py
executable file
·160 lines (130 loc) · 5.84 KB
/
staple_2020_scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import string
from typing import Dict, List, Set
from utils import read_transfile
def score(gold: Dict[str, Dict[str, float]], pred: Dict[str, Dict[str, float]], verbose: bool=False) -> float:
# now we score gold and pred!
gold_keys = set(gold.keys())
pred_keys = set(pred.keys())
print(f"There are {len(gold_keys)} keys in gold and {len(pred_keys)} keys in pred.")
if len(gold_keys.intersection(pred_keys)) == len(pred_keys):
print("All predicted keys are in the gold. WELL DONE.")
extras = pred_keys - gold_keys
if len(extras) > 0:
print(f"Warning: your pred file has {len(extras)} key sentences that don't appear in the gold.")
print(sorted(list(extras)))
print("unmatched golds:")
unmatched_golds = sorted(list(gold_keys - pred_keys))
print(unmatched_golds)
if len(gold.keys()) != len(pred.keys()):
print(f"WARNING: num keys doesn't match: {len(gold.keys())}, {len(pred.keys())}")
print("missing keys:", gold_keys - pred_keys)
sent_wf1s = []
sent_f1s = []
micro_tp = 0
micro_wtp = 0
micro_fp = 0
micro_fn = 0
micro_wfn= 0
for k, gold_opts in gold.items():
# gold_opts is now a dictionary of {at: weight}
if k not in pred:
print(f"A gold key ({k}) is not in the predicted file. This should never happen!")
else:
pred_opts = pred[k]
sentences_only_in_gold = gold_opts.keys() - pred_opts.keys()
fn = len(sentences_only_in_gold)
# 'w' character stands for weighted
wfn = sum([gold_opts[o] for o in sentences_only_in_gold])
sentences_in_both = set(gold_opts.keys()).intersection(set(pred_opts.keys()))
tp = len(sentences_in_both)
wtp = sum([gold_opts[o] for o in sentences_in_both])
# intentionally no wfp
sentences_only_in_pred = pred_opts.keys() - gold_opts.keys()
fp = len(sentences_only_in_pred)
micro_tp += tp
micro_wtp += wtp
micro_fp += fp
micro_fn += fn
micro_wfn += wfn
if verbose:
print(k)
print("true positives")
for i in sorted([(o,gold_opts[o]) for o in sentences_in_both], key=lambda p: p[1], reverse=True):
print(i)
print("false positives", sentences_only_in_pred)
print("false negatives")
for i in sorted([(o,gold_opts[o]) for o in sentences_only_in_gold], key=lambda p: p[1], reverse=True):
print(i)
print()
# calculate MACRO
precision = 0 if tp+fp == 0 else tp / (tp + fp)
recall = 0 if tp+fn == 0 else tp / (tp + fn)
weighted_recall = 0 if wtp+wfn == 0 else wtp / (wtp + wfn)
if precision == 0 and recall == 0:
macro_f1 = 0
else:
macro_f1 = 2*precision*recall / (precision + recall)
if precision == 0 and weighted_recall == 0:
macro_weighted_f1 = 0
else:
macro_weighted_f1 = 2*precision*weighted_recall / (precision + weighted_recall)
sent_f1s.append(macro_f1)
sent_wf1s.append(macro_weighted_f1)
precision = 0 if micro_tp + micro_fp == 0 else micro_tp / (micro_tp + micro_fp)
recall = 0 if micro_tp + micro_fn == 0 else micro_tp / (micro_tp + micro_fn)
weighted_recall = 0 if micro_wtp + micro_wfn == 0 else micro_wtp / (micro_wtp + micro_wfn)
if precision + recall == 0:
f1 = 0
else:
f1 = 2*precision*recall / (precision + recall)
if precision + weighted_recall == 0:
weighted_f1 = 0
else:
weighted_f1 = 2*precision*weighted_recall / (precision + weighted_recall)
macro_weighted_f1 = sum(sent_wf1s) / float(len(gold))
macro_f1 = sum(sent_f1s)/float(len(gold))
print(f"Precision: {precision:.2%}")
print(f"Recall: {recall:.2%}")
print(f"Weighted Recall: {weighted_recall:.2%}")
print(f"Micro F1: {f1:.2%}")
print(f"Macro F1: {macro_f1:.2%}")
print(f"Weighted Micro F1: {weighted_f1:.2%}")
print(f"Weighted Macro F1: {macro_weighted_f1:.2%}")
# This may be helpful for reporting scores in e.g. spreadsheets or latex tables.
# print(precision, recall, weighted_recall, f1, macro_f1, weighted_f1, macro_weighted_f1)
return precision, recall, weighted_recall, macro_weighted_f1
# return macro_weighted_f1
if __name__ == "__main__":
# this will take two files of the format:
# id|source
# trans1
# trans2
# trans3
# ...
# trans4
#
# id|source
# trans1
# ...
# and it will score them with F1.
# to be precise:
# sent_i is associated with a set of "gold" translations {trans_j, ...}, which may or may not have some weights associated with them.
# for sent_i, we predict a set of translations {trans_k, ...}. These are scored against the gold set as follows:
# tp : | intersection of the sets |
# fn : | gold - pred |
# fp : | pred - gold |
# this outputs both micro f1, in which precision/recall/f1 are calculated over the entire dataset, and macro f1, in which precision/recall/f1
# are calculated over each prompt separately and averaged at the end.
parser = argparse.ArgumentParser()
parser.add_argument("--goldfile", help="gold file", required=True)
parser.add_argument("--predfile", help="pred file", required=True)
parser.add_argument("--verbose", "-v", action="store_true", default=False)
args = parser.parse_args()
with open(args.goldfile) as f:
print("reading gold")
gold = read_transfile(f.readlines(), weighted=True)
with open(args.predfile) as f:
print("reading pred")
pred = read_transfile(f.readlines())
score(gold, pred, args.verbose)