-
Notifications
You must be signed in to change notification settings - Fork 1
/
color_tracking_draft.py
166 lines (114 loc) · 3.98 KB
/
color_tracking_draft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding: utf-8
# In[1]:
# adapted from https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
# Kalman filter from https://github.com/Myzhar/simple-opencv-kalman-tracker/blob/master/source/opencv-kalman.cpp
from collections import deque
import numpy as np
import argparse
import imutils
import cv2
# In[2]:
thresLower = (25, 50, 50)
thresUpper = (35, 255, 255)
pts = deque(maxlen=64)
camera = cv2.VideoCapture(0)
# In[3]:
stateSize = 5 # [x, y, v_x, v_y, r]'
measSize = 3 # [x, y, r]
kf = cv2.KalmanFilter(stateSize, measSize)
cv2.setIdentity(kf.transitionMatrix, 1.)
kf.measurementMatrix = np.array([
[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 0., 0., 1.]
],np.float32)
kf.processNoiseCov = np.array([
[1e-3, 0, 0, 0, 0],
[0, 1e-3, 0, 0, 0],
[0, 0, 5., 0, 0],
[0, 0, 0, 5., 0],
[0, 0, 0, 0, 1e-1]
],np.float32)
cv2.setIdentity(kf.measurementNoiseCov, 1e-1)
ticks = cv2.getTickCount()
# In[4]:
while True:
# grab the current frame
(grabbed, frame) = camera.read()
precTick = ticks
ticks = cv2.getTickCount()
dT = (ticks - precTick) / cv2.getTickFrequency()
# resize the frame, blur it, and convert it to the HSV
# color space
# frame = imutils.resize(frame, width=600)
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "yellow", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, thresLower, thresUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
mp = np.array([[x], [y], [radius]],np.float32)
kf.transitionMatrix = np.array([
[1., 0, dT, 0, 0],
[0, 1., 0, dT, 0],
[0, 0, 1., 0, 0],
[0, 0, 0, 1., 0],
[0, 0, 0, 0, 1.]
],np.float32)
kf.correct(mp)
# update the points queue
state = kf.predict()
x = state[0]
y = state[1]
radius = state[4]
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
pts.appendleft(center)
# loop over the set of tracked points
for i in xrange(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(64 / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
cv2.imshow("Frame", cv2.flip(frame,1))
# cv2.imshow("HSV", cv2.flip(hsv,1))
cv2.imshow("Mask", cv2.flip(mask,1))
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# In[5]:
camera.release()
cv2.destroyAllWindows()
# In[ ]:
green = np.uint8([[[0,111,255 ]]])
cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
# In[ ]:
green = np.uint8([[[29, 86, 6]]])
cv2.cvtColor(green,cv2.COLOR_HSV2RGB)