forked from MarkMoHR/virtual_sketching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_photograph_to_line.py
260 lines (201 loc) · 11.6 KB
/
test_photograph_to_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import numpy as np
import os
import tensorflow as tf
from six.moves import range
from PIL import Image
import argparse
import hyper_parameters as hparams
from model_common_test import DiffPastingV3, VirtualSketchingModel
from utils import reset_graph, load_checkpoint, update_hyperparams, draw, \
save_seq_data, image_pasting_v3_testing, draw_strokes
from dataset_utils import load_dataset_testing
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def sample(sess, model, input_photos, init_cursor, image_size, init_len, seq_len, state_dependent,
pasting_func):
"""Samples a sequence from a pre-trained model."""
select_times = 1
cursor_pos = np.squeeze(init_cursor, axis=0) # (select_times, 1, 2)
curr_canvas = np.zeros(dtype=np.float32,
shape=(select_times, image_size, image_size)) # [0.0-BG, 1.0-stroke]
initial_state = sess.run(model.initial_state)
prev_state = initial_state
prev_width = np.stack([model.hps.min_width for _ in range(select_times)], axis=0)
prev_scaling = np.ones((select_times), dtype=np.float32) # (N)
prev_window_size = np.ones((select_times), dtype=np.float32) * model.hps.raster_size # (N)
params_list = [[] for _ in range(select_times)]
state_raw_list = [[] for _ in range(select_times)]
state_soft_list = [[] for _ in range(select_times)]
window_size_list = [[] for _ in range(select_times)]
input_photos_tiles = np.tile(input_photos, (select_times, 1, 1, 1))
for i in range(seq_len):
if not state_dependent and i % init_len == 0:
prev_state = initial_state
curr_window_size = prev_scaling * prev_window_size # (N)
curr_window_size = np.maximum(curr_window_size, model.hps.min_window_size)
curr_window_size = np.minimum(curr_window_size, image_size)
feed = {
model.initial_state: prev_state,
model.input_photo: input_photos_tiles,
model.curr_canvas_hard: curr_canvas.copy(),
model.cursor_position: cursor_pos,
model.image_size: image_size,
model.init_width: prev_width,
model.init_scaling: prev_scaling,
model.init_window_size: prev_window_size,
}
o_other_params_list, o_pen_list, o_pred_params_list, next_state_list = \
sess.run([model.other_params, model.pen_ras, model.pred_params, model.final_state], feed_dict=feed)
# o_other_params: (N, 6), o_pen: (N, 2), pred_params: (N, 1, 7), next_state: (N, 1024)
# o_other_params: [tanh*2, sigmoid*2, tanh*2, sigmoid*2]
idx_eos_list = np.argmax(o_pen_list, axis=1) # (N)
for output_i in range(idx_eos_list.shape[0]):
idx_eos = idx_eos_list[output_i]
eos = [0, 0]
eos[idx_eos] = 1
other_params = o_other_params_list[output_i].tolist() # (6)
params_list[output_i].append([eos[1]] + other_params)
state_raw_list[output_i].append(o_pen_list[output_i][1])
state_soft_list[output_i].append(o_pred_params_list[output_i, 0, 0])
window_size_list[output_i].append(curr_window_size[output_i])
# draw the stroke and add to the canvas
x1y1, x2y2, width2 = o_other_params_list[output_i, 0:2], o_other_params_list[output_i, 2:4], \
o_other_params_list[output_i, 4]
x0y0 = np.zeros_like(x2y2) # (2), [-1.0, 1.0]
x0y0 = np.divide(np.add(x0y0, 1.0), 2.0) # (2), [0.0, 1.0]
x2y2 = np.divide(np.add(x2y2, 1.0), 2.0) # (2), [0.0, 1.0]
widths = np.stack([prev_width[output_i], width2], axis=0) # (2)
o_other_params_proc = np.concatenate([x0y0, x1y1, x2y2, widths], axis=-1).tolist() # (8)
if idx_eos == 0:
f = o_other_params_proc + [1.0, 1.0]
pred_stroke_img = draw(f) # (raster_size, raster_size), [0.0-stroke, 1.0-BG]
pred_stroke_img_large = image_pasting_v3_testing(1.0 - pred_stroke_img, cursor_pos[output_i, 0],
image_size,
curr_window_size[output_i],
pasting_func, sess) # [0.0-BG, 1.0-stroke]
curr_canvas[output_i] += pred_stroke_img_large # [0.0-BG, 1.0-stroke]
curr_canvas = np.clip(curr_canvas, 0.0, 1.0)
next_width = o_other_params_list[:, 4] # (N)
next_scaling = o_other_params_list[:, 5]
next_window_size = next_scaling * curr_window_size # (N)
next_window_size = np.maximum(next_window_size, model.hps.min_window_size)
next_window_size = np.minimum(next_window_size, image_size)
prev_state = next_state_list
prev_width = next_width * curr_window_size / next_window_size # (N,)
prev_scaling = next_scaling # (N)
prev_window_size = curr_window_size
# update cursor_pos based on hps.cursor_type
new_cursor_offsets = o_other_params_list[:, 2:4] * (np.expand_dims(curr_window_size, axis=-1) / 2.0) # (N, 2), patch-level
new_cursor_offset_next = new_cursor_offsets
# important!!!
new_cursor_offset_next = np.concatenate([new_cursor_offset_next[:, 1:2], new_cursor_offset_next[:, 0:1]], axis=-1)
cursor_pos_large = cursor_pos * float(image_size)
stroke_position_next = cursor_pos_large[:, 0, :] + new_cursor_offset_next # (N, 2), large-level
if model.hps.cursor_type == 'next':
cursor_pos_large = stroke_position_next # (N, 2), large-level
else:
raise Exception('Unknown cursor_type')
cursor_pos_large = np.minimum(np.maximum(cursor_pos_large, 0.0), float(image_size - 1)) # (N, 2), large-level
cursor_pos_large = np.expand_dims(cursor_pos_large, axis=1) # (N, 1, 2)
cursor_pos = cursor_pos_large / float(image_size)
return params_list, state_raw_list, state_soft_list, curr_canvas, window_size_list
def main_testing(test_image_base_dir, test_dataset, test_image_name,
sampling_base_dir, model_base_dir, model_name,
sampling_num,
draw_seq=False, draw_order=False,
state_dependent=True, longer_infer_len=-1):
model_params_default = hparams.get_default_hparams_normal()
model_params = update_hyperparams(model_params_default, model_base_dir, model_name, infer_dataset=test_dataset)
[test_set, eval_hps_model, sample_hps_model] = \
load_dataset_testing(test_image_base_dir, test_dataset, test_image_name, model_params)
test_image_raw_name = test_image_name[:test_image_name.find('.')]
model_dir = os.path.join(model_base_dir, model_name)
reset_graph()
sampling_model = VirtualSketchingModel(sample_hps_model)
# differentiable pasting graph
paste_v3_func = DiffPastingV3(sample_hps_model.raster_size)
tfconfig = tf.ConfigProto()
tfconfig.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=tfconfig)
sess.run(tf.global_variables_initializer())
# loads the weights from checkpoint into our model
snapshot_step = load_checkpoint(sess, model_dir, gen_model_pretrain=True)
print('snapshot_step', snapshot_step)
sampling_dir = os.path.join(sampling_base_dir, test_dataset + '_|_' + model_name)
os.makedirs(sampling_dir, exist_ok=True)
if longer_infer_len == -1:
tmp_max_len = eval_hps_model.max_seq_len
else:
tmp_max_len = longer_infer_len
for sampling_i in range(sampling_num):
input_photos, init_cursors, test_image_size = test_set.get_test_image()
# input_photos: (1, image_size, image_size, 3), [0-stroke, 1-BG]
# init_cursors: (N, 1, 2), in size [0.0, 1.0)
print()
print(test_image_name, ', image_size:', test_image_size, ', sampling_i:', sampling_i)
print('Processing ...')
if init_cursors.ndim == 3:
init_cursors = np.expand_dims(init_cursors, axis=0)
input_photos = input_photos[0:1, :, :, :]
ori_img = (input_photos.copy()[0] * 255.0).astype(np.uint8)
ori_img_png = Image.fromarray(ori_img, 'RGB')
ori_img_png.save(os.path.join(sampling_dir, test_image_raw_name + '_input.png'), 'PNG')
# decoding for sampling
strokes_raw_out_list, states_raw_out_list, states_soft_out_list, pred_imgs_out, window_size_out_list = sample(
sess, sampling_model, input_photos, init_cursors, test_image_size,
eval_hps_model.max_seq_len, tmp_max_len, state_dependent, paste_v3_func)
# pred_imgs_out: (N, H, W), [0.0-BG, 1.0-stroke]
output_i = 0
strokes_raw_out = np.stack(strokes_raw_out_list[output_i], axis=0)
states_raw_out = states_raw_out_list[output_i]
states_soft_out = states_soft_out_list[output_i]
window_size_out = window_size_out_list[output_i]
round_new_lengths = [tmp_max_len]
multi_cursors = [init_cursors[0, output_i, 0, :]]
print('strokes_raw_out', strokes_raw_out.shape)
clean_states_soft_out = np.array(states_soft_out) # (N)
flag_list = strokes_raw_out[:, 0].astype(np.int32) # (N)
drawing_len = len(flag_list) - np.sum(flag_list)
assert drawing_len >= 0
# print(' flag raw\t soft\t x1\t\t y1\t\t x2\t\t y2\t\t r2\t\t s2')
for i in range(strokes_raw_out.shape[0]):
flag, x1, y1, x2, y2, r2, s2 = strokes_raw_out[i]
win_size = window_size_out[i]
out_format = '#%d: %d | %.4f, %.4f, %.4f, %.4f, %.4f, %.4f, %.4f, %.4f'
out_values = (i, flag, states_raw_out[i], clean_states_soft_out[i], x1, y1, x2, y2, r2, s2)
out_log = out_format % out_values
# print(out_log)
print('Saving results ...')
save_seq_data(sampling_dir, test_image_raw_name + '_' + str(sampling_i),
strokes_raw_out, init_cursors[0, output_i, 0, :],
test_image_size, tmp_max_len, eval_hps_model.min_width)
draw_strokes(strokes_raw_out, sampling_dir, test_image_raw_name + '_' + str(sampling_i) + '_pred.png',
ori_img, test_image_size,
multi_cursors, round_new_lengths, eval_hps_model.min_width, eval_hps_model.cursor_type,
sample_hps_model.raster_size, sample_hps_model.min_window_size,
sess,
pasting_func=paste_v3_func,
save_seq=draw_seq, draw_order=draw_order)
def main(model_name, test_image_name, sampling_num):
test_dataset = 'faces'
test_image_base_dir = 'sample_inputs'
sampling_base_dir = 'outputs/sampling'
model_base_dir = 'outputs/snapshot'
state_dependent = False
longer_infer_len = 100
draw_seq = False
draw_color_order = True
# set numpy output to something sensible
np.set_printoptions(precision=8, edgeitems=6, linewidth=200, suppress=True)
main_testing(test_image_base_dir, test_dataset, test_image_name,
sampling_base_dir, model_base_dir, model_name, sampling_num,
draw_seq=draw_seq, draw_order=draw_color_order,
state_dependent=state_dependent, longer_infer_len=longer_infer_len)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input', '-i', type=str, default='', help="The test image name.")
parser.add_argument('--model', '-m', type=str, default='pretrain_faces', help="The trained model.")
parser.add_argument('--sample', '-s', type=int, default=1, help="The number of outputs.")
args = parser.parse_args()
assert args.input != ''
assert args.sample > 0
main(args.model, args.input, args.sample)