-
Notifications
You must be signed in to change notification settings - Fork 129
/
test.py
461 lines (414 loc) · 22.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# -*- coding: utf-8 -*-
# Implementation of Wang et al 2017: Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks. https://arxiv.org/abs/1709.00382
# Author: Guotai Wang
# Copyright (c) 2017-2018 University College London, United Kingdom. All rights reserved.
# http://cmictig.cs.ucl.ac.uk
#
# Distributed under the BSD-3 licence. Please see the file licence.txt
# This software is not certified for clinical use.
#
from __future__ import absolute_import, print_function
import numpy as np
from scipy import ndimage
import time
import os
import sys
import tensorflow as tf
from tensorflow.contrib.data import Iterator
from util.data_loader import *
from util.data_process import *
from util.train_test_func import *
from util.parse_config import parse_config
from train import NetFactory
def test(config_file):
# 1, load configure file
config = parse_config(config_file)
config_data = config['data']
config_net1 = config.get('network1', None)
config_net2 = config.get('network2', None)
config_net3 = config.get('network3', None)
config_test = config['testing']
batch_size = config_test.get('batch_size', 5)
# 2.1, network for whole tumor
if(config_net1):
net_type1 = config_net1['net_type']
net_name1 = config_net1['net_name']
data_shape1 = config_net1['data_shape']
label_shape1 = config_net1['label_shape']
class_num1 = config_net1['class_num']
# construct graph for 1st network
full_data_shape1 = [batch_size] + data_shape1
x1 = tf.placeholder(tf.float32, shape = full_data_shape1)
net_class1 = NetFactory.create(net_type1)
net1 = net_class1(num_classes = class_num1,w_regularizer = None,
b_regularizer = None, name = net_name1)
net1.set_params(config_net1)
predicty1 = net1(x1, is_training = True)
proby1 = tf.nn.softmax(predicty1)
else:
config_net1ax = config['network1ax']
config_net1sg = config['network1sg']
config_net1cr = config['network1cr']
# construct graph for 1st network axial
net_type1ax = config_net1ax['net_type']
net_name1ax = config_net1ax['net_name']
data_shape1ax = config_net1ax['data_shape']
label_shape1ax = config_net1ax['label_shape']
class_num1ax = config_net1ax['class_num']
full_data_shape1ax = [batch_size] + data_shape1ax
x1ax = tf.placeholder(tf.float32, shape = full_data_shape1ax)
net_class1ax = NetFactory.create(net_type1ax)
net1ax = net_class1ax(num_classes = class_num1ax,w_regularizer = None,
b_regularizer = None, name = net_name1ax)
net1ax.set_params(config_net1ax)
predicty1ax = net1ax(x1ax, is_training = True)
proby1ax = tf.nn.softmax(predicty1ax)
# construct graph for 1st network sagittal
net_type1sg = config_net1sg['net_type']
net_name1sg = config_net1sg['net_name']
data_shape1sg = config_net1sg['data_shape']
label_shape1sg = config_net1sg['label_shape']
class_num1sg = config_net1sg['class_num']
full_data_shape1sg = [batch_size] + data_shape1sg
x1sg = tf.placeholder(tf.float32, shape = full_data_shape1sg)
net_class1sg = NetFactory.create(net_type1sg)
net1sg = net_class1sg(num_classes = class_num1sg,w_regularizer = None,
b_regularizer = None, name = net_name1sg)
net1sg.set_params(config_net1sg)
predicty1sg = net1sg(x1sg, is_training = True)
proby1sg = tf.nn.softmax(predicty1sg)
# construct graph for 1st network corogal
net_type1cr = config_net1cr['net_type']
net_name1cr = config_net1cr['net_name']
data_shape1cr = config_net1cr['data_shape']
label_shape1cr = config_net1cr['label_shape']
class_num1cr = config_net1cr['class_num']
full_data_shape1cr = [batch_size] + data_shape1cr
x1cr = tf.placeholder(tf.float32, shape = full_data_shape1cr)
net_class1cr = NetFactory.create(net_type1cr)
net1cr = net_class1cr(num_classes = class_num1cr,w_regularizer = None,
b_regularizer = None, name = net_name1cr)
net1cr.set_params(config_net1cr)
predicty1cr = net1cr(x1cr, is_training = True)
proby1cr = tf.nn.softmax(predicty1cr)
if(config_test.get('whole_tumor_only', False) is False):
# 2.2, networks for tumor core
if(config_net2):
net_type2 = config_net2['net_type']
net_name2 = config_net2['net_name']
data_shape2 = config_net2['data_shape']
label_shape2 = config_net2['label_shape']
class_num2 = config_net2['class_num']
# construct graph for 2st network
full_data_shape2 = [batch_size] + data_shape2
x2 = tf.placeholder(tf.float32, shape = full_data_shape2)
net_class2 = NetFactory.create(net_type2)
net2 = net_class2(num_classes = class_num2,w_regularizer = None,
b_regularizer = None, name = net_name2)
net2.set_params(config_net2)
predicty2 = net2(x2, is_training = True)
proby2 = tf.nn.softmax(predicty2)
else:
config_net2ax = config['network2ax']
config_net2sg = config['network2sg']
config_net2cr = config['network2cr']
# construct graph for 2st network axial
net_type2ax = config_net2ax['net_type']
net_name2ax = config_net2ax['net_name']
data_shape2ax = config_net2ax['data_shape']
label_shape2ax = config_net2ax['label_shape']
class_num2ax = config_net2ax['class_num']
full_data_shape2ax = [batch_size] + data_shape2ax
x2ax = tf.placeholder(tf.float32, shape = full_data_shape2ax)
net_class2ax = NetFactory.create(net_type2ax)
net2ax = net_class2ax(num_classes = class_num2ax,w_regularizer = None,
b_regularizer = None, name = net_name2ax)
net2ax.set_params(config_net2ax)
predicty2ax = net2ax(x2ax, is_training = True)
proby2ax = tf.nn.softmax(predicty2ax)
# construct graph for 2st network sagittal
net_type2sg = config_net2sg['net_type']
net_name2sg = config_net2sg['net_name']
data_shape2sg = config_net2sg['data_shape']
label_shape2sg = config_net2sg['label_shape']
class_num2sg = config_net2sg['class_num']
full_data_shape2sg = [batch_size] + data_shape2sg
x2sg = tf.placeholder(tf.float32, shape = full_data_shape2sg)
net_class2sg = NetFactory.create(net_type2sg)
net2sg = net_class2sg(num_classes = class_num2sg,w_regularizer = None,
b_regularizer = None, name = net_name2sg)
net2sg.set_params(config_net2sg)
predicty2sg = net2sg(x2sg, is_training = True)
proby2sg = tf.nn.softmax(predicty2sg)
# construct graph for 2st network corogal
net_type2cr = config_net2cr['net_type']
net_name2cr = config_net2cr['net_name']
data_shape2cr = config_net2cr['data_shape']
label_shape2cr = config_net2cr['label_shape']
class_num2cr = config_net2cr['class_num']
full_data_shape2cr = [batch_size] + data_shape2cr
x2cr = tf.placeholder(tf.float32, shape = full_data_shape2cr)
net_class2cr = NetFactory.create(net_type2cr)
net2cr = net_class2cr(num_classes = class_num2cr,w_regularizer = None,
b_regularizer = None, name = net_name2cr)
net2cr.set_params(config_net2cr)
predicty2cr = net2cr(x2cr, is_training = True)
proby2cr = tf.nn.softmax(predicty2cr)
# 2.3, networks for enhanced tumor
if(config_net3):
net_type3 = config_net3['net_type']
net_name3 = config_net3['net_name']
data_shape3 = config_net3['data_shape']
label_shape3 = config_net3['label_shape']
class_num3 = config_net3['class_num']
# construct graph for 3st network
full_data_shape3 = [batch_size] + data_shape3
x3 = tf.placeholder(tf.float32, shape = full_data_shape3)
net_class3 = NetFactory.create(net_type3)
net3 = net_class3(num_classes = class_num3,w_regularizer = None,
b_regularizer = None, name = net_name3)
net3.set_params(config_net3)
predicty3 = net3(x3, is_training = True)
proby3 = tf.nn.softmax(predicty3)
else:
config_net3ax = config['network3ax']
config_net3sg = config['network3sg']
config_net3cr = config['network3cr']
# construct graph for 3st network axial
net_type3ax = config_net3ax['net_type']
net_name3ax = config_net3ax['net_name']
data_shape3ax = config_net3ax['data_shape']
label_shape3ax = config_net3ax['label_shape']
class_num3ax = config_net3ax['class_num']
full_data_shape3ax = [batch_size] + data_shape3ax
x3ax = tf.placeholder(tf.float32, shape = full_data_shape3ax)
net_class3ax = NetFactory.create(net_type3ax)
net3ax = net_class3ax(num_classes = class_num3ax,w_regularizer = None,
b_regularizer = None, name = net_name3ax)
net3ax.set_params(config_net3ax)
predicty3ax = net3ax(x3ax, is_training = True)
proby3ax = tf.nn.softmax(predicty3ax)
# construct graph for 3st network sagittal
net_type3sg = config_net3sg['net_type']
net_name3sg = config_net3sg['net_name']
data_shape3sg = config_net3sg['data_shape']
label_shape3sg = config_net3sg['label_shape']
class_num3sg = config_net3sg['class_num']
# construct graph for 3st network
full_data_shape3sg = [batch_size] + data_shape3sg
x3sg = tf.placeholder(tf.float32, shape = full_data_shape3sg)
net_class3sg = NetFactory.create(net_type3sg)
net3sg = net_class3sg(num_classes = class_num3sg,w_regularizer = None,
b_regularizer = None, name = net_name3sg)
net3sg.set_params(config_net3sg)
predicty3sg = net3sg(x3sg, is_training = True)
proby3sg = tf.nn.softmax(predicty3sg)
# construct graph for 3st network corogal
net_type3cr = config_net3cr['net_type']
net_name3cr = config_net3cr['net_name']
data_shape3cr = config_net3cr['data_shape']
label_shape3cr = config_net3cr['label_shape']
class_num3cr = config_net3cr['class_num']
# construct graph for 3st network
full_data_shape3cr = [batch_size] + data_shape3cr
x3cr = tf.placeholder(tf.float32, shape = full_data_shape3cr)
net_class3cr = NetFactory.create(net_type3cr)
net3cr = net_class3cr(num_classes = class_num3cr,w_regularizer = None,
b_regularizer = None, name = net_name3cr)
net3cr.set_params(config_net3cr)
predicty3cr = net3cr(x3cr, is_training = True)
proby3cr = tf.nn.softmax(predicty3cr)
# 3, create session and load trained models
all_vars = tf.global_variables()
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
if(config_net1):
net1_vars = [x for x in all_vars if x.name[0:len(net_name1) + 1]==net_name1 + '/']
saver1 = tf.train.Saver(net1_vars)
saver1.restore(sess, config_net1['model_file'])
else:
net1ax_vars = [x for x in all_vars if x.name[0:len(net_name1ax) + 1]==net_name1ax + '/']
saver1ax = tf.train.Saver(net1ax_vars)
saver1ax.restore(sess, config_net1ax['model_file'])
net1sg_vars = [x for x in all_vars if x.name[0:len(net_name1sg) + 1]==net_name1sg + '/']
saver1sg = tf.train.Saver(net1sg_vars)
saver1sg.restore(sess, config_net1sg['model_file'])
net1cr_vars = [x for x in all_vars if x.name[0:len(net_name1cr) + 1]==net_name1cr + '/']
saver1cr = tf.train.Saver(net1cr_vars)
saver1cr.restore(sess, config_net1cr['model_file'])
if(config_test.get('whole_tumor_only', False) is False):
if(config_net2):
net2_vars = [x for x in all_vars if x.name[0:len(net_name2) + 1]==net_name2 + '/']
saver2 = tf.train.Saver(net2_vars)
saver2.restore(sess, config_net2['model_file'])
else:
net2ax_vars = [x for x in all_vars if x.name[0:len(net_name2ax)+1]==net_name2ax + '/']
saver2ax = tf.train.Saver(net2ax_vars)
saver2ax.restore(sess, config_net2ax['model_file'])
net2sg_vars = [x for x in all_vars if x.name[0:len(net_name2sg)+1]==net_name2sg + '/']
saver2sg = tf.train.Saver(net2sg_vars)
saver2sg.restore(sess, config_net2sg['model_file'])
net2cr_vars = [x for x in all_vars if x.name[0:len(net_name2cr)+1]==net_name2cr + '/']
saver2cr = tf.train.Saver(net2cr_vars)
saver2cr.restore(sess, config_net2cr['model_file'])
if(config_net3):
net3_vars = [x for x in all_vars if x.name[0:len(net_name3) + 1]==net_name3 + '/']
saver3 = tf.train.Saver(net3_vars)
saver3.restore(sess, config_net3['model_file'])
else:
net3ax_vars = [x for x in all_vars if x.name[0:len(net_name3ax) + 1]==net_name3ax+ '/']
saver3ax = tf.train.Saver(net3ax_vars)
saver3ax.restore(sess, config_net3ax['model_file'])
net3sg_vars = [x for x in all_vars if x.name[0:len(net_name3sg) + 1]==net_name3sg+ '/']
saver3sg = tf.train.Saver(net3sg_vars)
saver3sg.restore(sess, config_net3sg['model_file'])
net3cr_vars = [x for x in all_vars if x.name[0:len(net_name3cr) + 1]==net_name3cr+ '/']
saver3cr = tf.train.Saver(net3cr_vars)
saver3cr.restore(sess, config_net3cr['model_file'])
# 4, load test images
dataloader = DataLoader(config_data)
dataloader.load_data()
image_num = dataloader.get_total_image_number()
# 5, start to test
test_slice_direction = config_test.get('test_slice_direction', 'all')
save_folder = config_data['save_folder']
test_time = []
struct = ndimage.generate_binary_structure(3, 2)
margin = config_test.get('roi_patch_margin', 5)
for i in range(image_num):
[temp_imgs, temp_weight, temp_name, img_names, temp_bbox, temp_size] = dataloader.get_image_data_with_name(i)
t0 = time.time()
# 5.1, test of 1st network
if(config_net1):
data_shapes = [ data_shape1[:-1], data_shape1[:-1], data_shape1[:-1]]
label_shapes = [label_shape1[:-1], label_shape1[:-1], label_shape1[:-1]]
nets = [net1, net1, net1]
outputs = [proby1, proby1, proby1]
inputs = [x1, x1, x1]
class_num = class_num1
else:
data_shapes = [ data_shape1ax[:-1], data_shape1sg[:-1], data_shape1cr[:-1]]
label_shapes = [label_shape1ax[:-1], label_shape1sg[:-1], label_shape1cr[:-1]]
nets = [net1ax, net1sg, net1cr]
outputs = [proby1ax, proby1sg, proby1cr]
inputs = [x1ax, x1sg, x1cr]
class_num = class_num1ax
prob1 = test_one_image_three_nets_adaptive_shape(temp_imgs, data_shapes, label_shapes, data_shape1ax[-1], class_num,
batch_size, sess, nets, outputs, inputs, shape_mode = 2)
pred1 = np.asarray(np.argmax(prob1, axis = 3), np.uint16)
pred1 = pred1 * temp_weight
wt_threshold = 2000
if(config_test.get('whole_tumor_only', False) is True):
pred1_lc = ndimage.morphology.binary_closing(pred1, structure = struct)
pred1_lc = get_largest_two_component(pred1_lc, False, wt_threshold)
out_label = pred1_lc
else:
# 5.2, test of 2nd network
if(pred1.sum() == 0):
print('net1 output is null', temp_name)
bbox1 = get_ND_bounding_box(temp_imgs[0] > 0, margin)
else:
pred1_lc = ndimage.morphology.binary_closing(pred1, structure = struct)
pred1_lc = get_largest_two_component(pred1_lc, False, wt_threshold)
bbox1 = get_ND_bounding_box(pred1_lc, margin)
sub_imgs = [crop_ND_volume_with_bounding_box(one_img, bbox1[0], bbox1[1]) for one_img in temp_imgs]
sub_weight = crop_ND_volume_with_bounding_box(temp_weight, bbox1[0], bbox1[1])
if(config_net2):
data_shapes = [ data_shape2[:-1], data_shape2[:-1], data_shape2[:-1]]
label_shapes = [label_shape2[:-1], label_shape2[:-1], label_shape2[:-1]]
nets = [net2, net2, net2]
outputs = [proby2, proby2, proby2]
inputs = [x2, x2, x2]
class_num = class_num2
else:
data_shapes = [ data_shape2ax[:-1], data_shape2sg[:-1], data_shape2cr[:-1]]
label_shapes = [label_shape2ax[:-1], label_shape2sg[:-1], label_shape2cr[:-1]]
nets = [net2ax, net2sg, net2cr]
outputs = [proby2ax, proby2sg, proby2cr]
inputs = [x2ax, x2sg, x2cr]
class_num = class_num2ax
prob2 = test_one_image_three_nets_adaptive_shape(sub_imgs, data_shapes, label_shapes, data_shape2ax[-1],
class_num, batch_size, sess, nets, outputs, inputs, shape_mode = 1)
pred2 = np.asarray(np.argmax(prob2, axis = 3), np.uint16)
pred2 = pred2 * sub_weight
# 5.3, test of 3rd network
if(pred2.sum() == 0):
[roid, roih, roiw] = sub_imgs[0].shape
bbox2 = [[0,0,0], [roid-1, roih-1, roiw-1]]
subsub_imgs = sub_imgs
subsub_weight = sub_weight
else:
pred2_lc = ndimage.morphology.binary_closing(pred2, structure = struct)
pred2_lc = get_largest_two_component(pred2_lc)
bbox2 = get_ND_bounding_box(pred2_lc, margin)
subsub_imgs = [crop_ND_volume_with_bounding_box(one_img, bbox2[0], bbox2[1]) for one_img in sub_imgs]
subsub_weight = crop_ND_volume_with_bounding_box(sub_weight, bbox2[0], bbox2[1])
if(config_net3):
data_shapes = [ data_shape3[:-1], data_shape3[:-1], data_shape3[:-1]]
label_shapes = [label_shape3[:-1], label_shape3[:-1], label_shape3[:-1]]
nets = [net3, net3, net3]
outputs = [proby3, proby3, proby3]
inputs = [x3, x3, x3]
class_num = class_num3
else:
data_shapes = [ data_shape3ax[:-1], data_shape3sg[:-1], data_shape3cr[:-1]]
label_shapes = [label_shape3ax[:-1], label_shape3sg[:-1], label_shape3cr[:-1]]
nets = [net3ax, net3sg, net3cr]
outputs = [proby3ax, proby3sg, proby3cr]
inputs = [x3ax, x3sg, x3cr]
class_num = class_num3ax
prob3 = test_one_image_three_nets_adaptive_shape(subsub_imgs, data_shapes, label_shapes, data_shape3ax[-1],
class_num, batch_size, sess, nets, outputs, inputs, shape_mode = 1)
pred3 = np.asarray(np.argmax(prob3, axis = 3), np.uint16)
pred3 = pred3 * subsub_weight
# 5.4, fuse results at 3 levels
# convert subsub_label to full size (non-enhanced)
label3_roi = np.zeros_like(pred2)
label3_roi = set_ND_volume_roi_with_bounding_box_range(label3_roi, bbox2[0], bbox2[1], pred3)
label3 = np.zeros_like(pred1)
label3 = set_ND_volume_roi_with_bounding_box_range(label3, bbox1[0], bbox1[1], label3_roi)
label2 = np.zeros_like(pred1)
label2 = set_ND_volume_roi_with_bounding_box_range(label2, bbox1[0], bbox1[1], pred2)
label1_mask = (pred1 + label2 + label3) > 0
label1_mask = ndimage.morphology.binary_closing(label1_mask, structure = struct)
label1_mask = get_largest_two_component(label1_mask, False, wt_threshold)
label1 = pred1 * label1_mask
label2_3_mask = (label2 + label3) > 0
label2_3_mask = label2_3_mask * label1_mask
label2_3_mask = ndimage.morphology.binary_closing(label2_3_mask, structure = struct)
label2_3_mask = remove_external_core(label1, label2_3_mask)
if(label2_3_mask.sum() > 0):
label2_3_mask = get_largest_two_component(label2_3_mask)
label1 = (label1 + label2_3_mask) > 0
label2 = label2_3_mask
label3 = label2 * label3
vox_3 = np.asarray(label3 > 0, np.float32).sum()
if(0 < vox_3 and vox_3 < 30):
label3 = np.zeros_like(label2)
# 5.5, convert label and save output
out_label = label1 * 2
if('Flair' in config_data['modality_postfix'] and 'mha' in config_data['file_postfix']):
out_label[label2>0] = 3
out_label[label3==1] = 1
out_label[label3==2] = 4
elif('flair' in config_data['modality_postfix'] and 'nii' in config_data['file_postfix']):
out_label[label2>0] = 1
out_label[label3>0] = 4
out_label = np.asarray(out_label, np.int16)
test_time.append(time.time() - t0)
final_label = np.zeros(temp_size, np.int16)
final_label = set_ND_volume_roi_with_bounding_box_range(final_label, temp_bbox[0], temp_bbox[1], out_label)
save_array_as_nifty_volume(final_label, save_folder+"/{0:}.nii.gz".format(temp_name), img_names[0])
print(temp_name)
test_time = np.asarray(test_time)
print('test time', test_time.mean())
np.savetxt(save_folder + '/test_time.txt', test_time)
sess.close()
if __name__ == '__main__':
if(len(sys.argv) != 2):
print('Number of arguments should be 2. e.g.')
print(' python test.py config17/test_all_class.txt')
exit()
config_file = str(sys.argv[1])
assert(os.path.isfile(config_file))
test(config_file)