-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
66 lines (52 loc) · 2.33 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import statistics
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size, train_CNN=False):
super(EncoderCNN, self).__init__()
self.train_CNN = train_CNN
self.inception = models.inception_v3(pretrained=True, aux_logits=False)
self.inception.fc = nn.Linear(self.inception.fc.in_features, embed_size)
self.relu = nn.ReLU()
self.times = []
self.dropout = nn.Dropout(0.5)
def forward(self, images):
features = self.inception(images)
return self.dropout(self.relu(features))
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
super(DecoderRNN, self).__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
self.linear = nn.Linear(hidden_size, vocab_size)
self.dropout = nn.Dropout(0.5)
def forward(self, features, captions):
embeddings = self.dropout(self.embed(captions))
embeddings = torch.cat((features.unsqueeze(0), embeddings), dim=0)
hiddens, _ = self.lstm(embeddings)
outputs = self.linear(hiddens)
return outputs
class CNNtoRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
super(CNNtoRNN, self).__init__()
self.encoderCNN = EncoderCNN(embed_size)
self.decoderRNN = DecoderRNN(embed_size, hidden_size, vocab_size, num_layers)
def forward(self, images, captions):
features = self.encoderCNN(images)
outputs = self.decoderRNN(features, captions)
return outputs
def caption_image(self, image, vocab, max_length=50):
result_caption = []
with torch.no_grad():
x = self.encoderCNN(image).unsqueeze(0)
states = None
for _ in range(max_length):
hiddens, states = self.decoderRNN.lstm(x, states)
output = self.decoderRNN.linear(hiddens.squeeze(0))
predicted = output.argmax(1)
result_caption.append(predicted.item())
x = self.decoderRNN.embed(predicted).unsqueeze(0)
if vocab[predicted.item()] == "<EOS>":
break
return [vocab[idx] for idx in result_caption]