-
Notifications
You must be signed in to change notification settings - Fork 2
/
lbfgsreg.py
609 lines (517 loc) · 22.5 KB
/
lbfgsreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import torch
from functools import reduce
from torch.optim.optimizer import Optimizer
from torch.nn.utils import parameters_to_vector, vector_to_parameters
def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None):
# ported from https://github.com/torch/optim/blob/master/polyinterp.lua
# Compute bounds of interpolation area
if bounds is not None:
xmin_bound, xmax_bound = bounds
else:
xmin_bound, xmax_bound = (x1, x2) if x1 <= x2 else (x2, x1)
# Code for most common case: cubic interpolation of 2 points
# w/ function and derivative values for both
# Solution in this case (where x2 is the farthest point):
# d1 = g1 + g2 - 3*(f1-f2)/(x1-x2);
# d2 = sqrt(d1^2 - g1*g2);
# min_pos = x2 - (x2 - x1)*((g2 + d2 - d1)/(g2 - g1 + 2*d2));
# t_new = min(max(min_pos,xmin_bound),xmax_bound);
d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2)
d2_square = d1**2 - g1 * g2
if d2_square >= 0:
d2 = d2_square.sqrt()
if x1 <= x2:
min_pos = x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2))
else:
min_pos = x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2))
return min(max(min_pos, xmin_bound), xmax_bound)
else:
return (xmin_bound + xmax_bound) / 2.
def _strong_wolfe(obj_func,
x,
t,
d,
f,
g,
gtd,
c1=1e-4,
c2=0.9,
tolerance_change=1e-9,
max_ls=25):
# ported from https://github.com/torch/optim/blob/master/lswolfe.lua
d_norm = d.abs().max()
g = g.clone(memory_format=torch.contiguous_format)
# evaluate objective and gradient using initial step
f_new, g_new = obj_func(x, t, d)
ls_func_evals = 1
gtd_new = g_new.dot(d)
# bracket an interval containing a point satisfying the Wolfe criteria
t_prev, f_prev, g_prev, gtd_prev = 0, f, g, gtd
done = False
ls_iter = 0
while ls_iter < max_ls:
# check conditions
if f_new > (f + c1 * t * gtd) or (ls_iter > 1 and f_new >= f_prev):
bracket = [t_prev, t]
bracket_f = [f_prev, f_new]
bracket_g = [g_prev, g_new.clone(memory_format=torch.contiguous_format)]
bracket_gtd = [gtd_prev, gtd_new]
break
if abs(gtd_new) <= -c2 * gtd:
bracket = [t]
bracket_f = [f_new]
bracket_g = [g_new]
done = True
break
if gtd_new >= 0:
bracket = [t_prev, t]
bracket_f = [f_prev, f_new]
bracket_g = [g_prev, g_new.clone(memory_format=torch.contiguous_format)]
bracket_gtd = [gtd_prev, gtd_new]
break
# interpolate
min_step = t + 0.01 * (t - t_prev)
max_step = t * 10
tmp = t
t = _cubic_interpolate(
t_prev,
f_prev,
gtd_prev,
t,
f_new,
gtd_new,
bounds=(min_step, max_step))
# next step
t_prev = tmp
f_prev = f_new
g_prev = g_new.clone(memory_format=torch.contiguous_format)
gtd_prev = gtd_new
f_new, g_new = obj_func(x, t, d)
ls_func_evals += 1
gtd_new = g_new.dot(d)
ls_iter += 1
# reached max number of iterations?
if ls_iter == max_ls:
bracket = [0, t]
bracket_f = [f, f_new]
bracket_g = [g, g_new]
# zoom phase: we now have a point satisfying the criteria, or
# a bracket around it. We refine the bracket until we find the
# exact point satisfying the criteria
insuf_progress = False
# find high and low points in bracket
low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[-1] else (1, 0)
while not done and ls_iter < max_ls:
# line-search bracket is so small
if abs(bracket[1] - bracket[0]) * d_norm < tolerance_change:
break
# compute new trial value
t = _cubic_interpolate(bracket[0], bracket_f[0], bracket_gtd[0],
bracket[1], bracket_f[1], bracket_gtd[1])
# test that we are making sufficient progress:
# in case `t` is so close to boundary, we mark that we are making
# insufficient progress, and if
# + we have made insufficient progress in the last step, or
# + `t` is at one of the boundary,
# we will move `t` to a position which is `0.1 * len(bracket)`
# away from the nearest boundary point.
eps = 0.1 * (max(bracket) - min(bracket))
if min(max(bracket) - t, t - min(bracket)) < eps:
# interpolation close to boundary
if insuf_progress or t >= max(bracket) or t <= min(bracket):
# evaluate at 0.1 away from boundary
if abs(t - max(bracket)) < abs(t - min(bracket)):
t = max(bracket) - eps
else:
t = min(bracket) + eps
insuf_progress = False
else:
insuf_progress = True
else:
insuf_progress = False
# Evaluate new point
f_new, g_new = obj_func(x, t, d)
ls_func_evals += 1
gtd_new = g_new.dot(d)
ls_iter += 1
if f_new > (f + c1 * t * gtd) or f_new >= bracket_f[low_pos]:
# Armijo condition not satisfied or not lower than lowest point
bracket[high_pos] = t
bracket_f[high_pos] = f_new
bracket_g[high_pos] = g_new.clone(memory_format=torch.contiguous_format)
bracket_gtd[high_pos] = gtd_new
low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[1] else (1, 0)
else:
if abs(gtd_new) <= -c2 * gtd:
# Wolfe conditions satisfied
done = True
elif gtd_new * (bracket[high_pos] - bracket[low_pos]) >= 0:
# old high becomes new low
bracket[high_pos] = bracket[low_pos]
bracket_f[high_pos] = bracket_f[low_pos]
bracket_g[high_pos] = bracket_g[low_pos]
bracket_gtd[high_pos] = bracket_gtd[low_pos]
# new point becomes new low
bracket[low_pos] = t
bracket_f[low_pos] = f_new
bracket_g[low_pos] = g_new.clone(memory_format=torch.contiguous_format)
bracket_gtd[low_pos] = gtd_new
# return stuff
t = bracket[low_pos]
f_new = bracket_f[low_pos]
g_new = bracket_g[low_pos]
return f_new, g_new, t, ls_func_evals
# The LBFGS optimiser. Started from the PyTorch default implementation
class LBFGSReg(Optimizer):
"""Implements L-BFGS algorithm, heavily inspired by `minFunc
<https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html>`.
.. warning::
This optimizer doesn't support per-parameter options and parameter
groups (there can be only one).
.. warning::
Right now all parameters have to be on a single device. This will be
improved in the future.
.. note::
This is a very memory intensive optimizer (it requires additional
``param_bytes * (history_size + 1)`` bytes). If it doesn't fit in memory
try reducing the history size, or use a different algorithm.
Arguments:
lr (float): learning rate (default: 1)
max_iter (int): maximal number of iterations per optimization step
(default: 20)
max_eval (int): maximal number of function evaluations per optimization
step (default: max_iter * 1.25).
tolerance_grad (float): termination tolerance on first order optimality
(default: 1e-5).
tolerance_change (float): termination tolerance on function
value/parameter changes (default: 1e-9).
history_size (int): update history size (default: 100).
line_search_fn (str): either 'strong_wolfe' or None (default: None).
"""
def __init__(self,
model,
lr=1,
max_iter=1,
max_eval=None,
tolerance_grad=1e-8,
tolerance_change=1e-9,
history_size=100,
line_search_fn=None,
weight_decay=0,
prior_prec_old=0.):
if max_eval is None:
max_eval = max_iter * 5 // 4
params = model.parameters()
defaults = dict(
lr=lr,
max_iter=max_iter,
max_eval=max_eval,
tolerance_grad=tolerance_grad,
tolerance_change=tolerance_change,
history_size=history_size,
line_search_fn=line_search_fn,
weight_decay=weight_decay,
prior_prec_old=prior_prec_old)
super(LBFGSReg, self).__init__(params, defaults)
if len(self.param_groups) != 1:
raise ValueError("LBFGS doesn't support per-parameter options "
"(parameter groups)")
self._params = self.param_groups[0]['params']
self._numel_cache = None
# Additional for K-priors and Replay
self.memory_labels = None
self.model = model
self.previous_weights = None
self.prior_prec_old = None
self.train_set_size = 0
def _numel(self):
if self._numel_cache is None:
self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0)
return self._numel_cache
def _gather_flat_grad(self):
views = []
for p in self._params:
if p.grad is None:
view = p.new(p.numel()).zero_()
elif p.grad.is_sparse:
view = p.grad.to_dense().view(-1)
else:
view = p.grad.view(-1)
views.append(view)
return torch.cat(views, 0)
def _add_grad(self, step_size, update):
offset = 0
for p in self._params:
numel = p.numel()
# view as to avoid deprecated pointwise semantics
p.add_(update[offset:offset + numel].view_as(p), alpha=step_size)
offset += numel
assert offset == self._numel()
def _clone_param(self):
return [p.clone(memory_format=torch.contiguous_format) for p in self._params]
def _set_param(self, params_data):
for p, pdata in zip(self._params, params_data):
p.copy_(pdata)
def _directional_evaluate(self, closure, x, t, d):
self._add_grad(t, d)
loss = float(closure())
flat_grad = self._gather_flat_grad()
self._set_param(x)
return loss, flat_grad
# Update the train set size to new task's dataset size
def update_train_set_size(self, size):
self.defaults['train_set_size'] = size
@torch.no_grad()
def step(self, closure_data, closure_memory=None, adaptation_method=None):
"""Performs a single optimization step.
Arguments:
closure (callable): A closure that reevaluates the model
and returns the loss.
closure_memory_points (callable): A closure that reevaluates
the model and returns the loss on stored (memory) points
adaptation_method: A string that is either "K-priors" or
"Replay", only used if closure_memorable_points is not None
"""
assert len(self.param_groups) == 1
# Make sure the closure is always called with grad enabled
if closure_data is not None:
closure_data = torch.enable_grad()(closure_data)
if closure_memory is not None:
closure_memory = torch.enable_grad()(closure_memory)
group = self.param_groups[0]
lr = group['lr']
max_iter = group['max_iter']
max_eval = group['max_eval']
tolerance_grad = group['tolerance_grad']
tolerance_change = group['tolerance_change']
line_search_fn = group['line_search_fn']
history_size = group['history_size']
parameters = self.param_groups[0]['params']
p = parameters_to_vector(parameters)
mu = p.clone().detach()
# NOTE: LBFGS has only global state, but we register it as state for
# the first param, because this helps with casting in load_state_dict
state = self.state[self._params[0]]
state.setdefault('func_evals', 0)
state.setdefault('n_iter', 0)
# evaluate initial f(x) and df/dx
self.total_datapoints_this_iter = 0
if closure_data is not None:
orig_loss = closure_data()
orig_loss.backward()
loss = float(orig_loss)
else:
orig_loss = 0.
loss = 0.
current_evals = 1
state['func_evals'] += 1
flat_grad = self._gather_flat_grad()
# Multiply by train set size
if self.train_set_size > 0:
flat_grad.mul_(self.train_set_size)
self.total_datapoints_this_iter += self.train_set_size
# Loss term over memory points (only if K-priors or Replay)
if closure_memory is not None:
# Forward pass through memory points
preds = closure_memory()
self.total_datapoints_this_iter += len(preds)
# Softmax on output
preds_soft = torch.softmax(preds, dim=-1)
# Calculate the vector that will be premultiplied by the Jacobian, of size M x 2
delta_logits = preds_soft.detach() - self.memory_labels
# Autograd
grad_message = torch.autograd.grad(preds, self.model.parameters(), grad_outputs=delta_logits)
# Convert grad_message into a vector
grad_vec = []
for i in range(len(grad_message)):
grad_vec.append(grad_message[i].data.view(-1))
grad_vec = torch.cat(grad_vec, dim=-1)
# Add to gradient
flat_grad.add_(grad_vec.detach())
# Weight regularisation
if adaptation_method == "K-priors" and self.prior_prec_old is not None:
flat_grad.add_(self.previous_weights, alpha=-self.prior_prec_old)
# Add l2 regularisation
if self.param_groups[0]['weight_decay'] != 0:
flat_grad.add_(mu, alpha=self.param_groups[0]['weight_decay'])
# Divide by train set size
if self.total_datapoints_this_iter > 0:
flat_grad.div_(self.total_datapoints_this_iter)
# Check if converged
opt_cond = flat_grad.abs().max() <= tolerance_grad
# optimal condition
if opt_cond:
return orig_loss
# tensors cached in state (for tracing)
d = state.get('d')
t = state.get('t')
old_dirs = state.get('old_dirs')
old_stps = state.get('old_stps')
ro = state.get('ro')
H_diag = state.get('H_diag')
prev_flat_grad = state.get('prev_flat_grad')
prev_loss = state.get('prev_loss')
n_iter = 0
# optimize for a max of max_iter iterations
while n_iter < max_iter:
# keep track of nb of iterations
n_iter += 1
state['n_iter'] += 1
############################################################
# compute gradient descent direction
############################################################
if state['n_iter'] == 1:
d = flat_grad.neg()
old_dirs = []
old_stps = []
ro = []
H_diag = 1
else:
# do lbfgs update (update memory)
y = flat_grad.sub(prev_flat_grad)
s = d.mul(t)
ys = y.dot(s) # y*s
if ys > 1e-10:
# updating memory
if len(old_dirs) == history_size:
# shift history by one (limited-memory)
old_dirs.pop(0)
old_stps.pop(0)
ro.pop(0)
# store new direction/step
old_dirs.append(y)
old_stps.append(s)
ro.append(1. / ys)
# update scale of initial Hessian approximation
H_diag = ys / y.dot(y) # (y*y)
# compute the approximate (L-BFGS) inverse Hessian
# multiplied by the gradient
num_old = len(old_dirs)
if 'al' not in state:
state['al'] = [None] * history_size
al = state['al']
# iteration in L-BFGS loop collapsed to use just one buffer
q = flat_grad.neg()
for i in range(num_old - 1, -1, -1):
al[i] = old_stps[i].dot(q) * ro[i]
q.add_(old_dirs[i], alpha=-al[i])
# multiply by initial Hessian
# r/d is the final direction
d = r = torch.mul(q, H_diag)
for i in range(num_old):
be_i = old_dirs[i].dot(r) * ro[i]
r.add_(old_stps[i], alpha=al[i] - be_i)
if prev_flat_grad is None:
prev_flat_grad = flat_grad.clone(memory_format=torch.contiguous_format)
else:
prev_flat_grad.copy_(flat_grad)
prev_loss = loss
############################################################
# compute step length
############################################################
# reset initial guess for step size
if state['n_iter'] == 1:
t = min(1., 1. / flat_grad.abs().sum()) * lr
else:
t = lr
# directional derivative
gtd = flat_grad.dot(d) # g * d
# directional derivative is below tolerance
if gtd > -tolerance_change:
break
# optional line search: user function
ls_func_evals = 0
if line_search_fn is not None:
# perform line search, using user function
if line_search_fn != "strong_wolfe":
raise RuntimeError("only 'strong_wolfe' is supported")
else:
x_init = self._clone_param()
def obj_func(x, t, d):
return self._directional_evaluate(closure_data, x, t, d)
loss, flat_grad, t, ls_func_evals = _strong_wolfe(
obj_func, x_init, t, d, loss, flat_grad, gtd)
self._add_grad(t, d)
opt_cond = flat_grad.abs().max() <= tolerance_grad
else:
# no line search, simply move with fixed-step
self._add_grad(t, d)
if n_iter != max_iter:
# re-evaluate function only if not in last iteration
# the reason we do this: in a stochastic setting,
# no use to re-evaluate that function here
with torch.enable_grad():
# evaluate initial f(x) and df/dx
self.total_datapoints_this_iter = 0
if closure_data is not None:
orig_loss = closure_data()
orig_loss.backward()
loss = float(orig_loss)
else:
orig_loss = 0.
loss = 0.
flat_grad = self._gather_flat_grad()
print('unexpected?')
# Multiply by train set size
if self.train_set_size > 0:
flat_grad.mul_(self.train_set_size)
self.total_datapoints_this_iter += self.train_set_size
# Loss term over memory points (only if K-priors or Replay)
if closure_memory is not None:
# Forward pass through memory points
preds = closure_memory()
self.total_datapoints_this_iter += len(preds)
# Softmax on output
preds_soft = torch.softmax(preds, dim=-1)
# Calculate the vector that will be premultiplied by the Jacobian, of size M x 2
delta_logits = preds_soft.detach() - self.memory_labels
# Autograd
grad_message = torch.autograd.grad(preds, self.model.parameters(), grad_outputs=delta_logits)
# Convert grad_message into a vector
grad_vec = []
for i in range(len(grad_message)):
grad_vec.append(grad_message[i].data.view(-1))
grad_vec = torch.cat(grad_vec, dim=-1)
# Add to gradient
flat_grad.add_(grad_vec.detach())
# Weight regularisation
if adaptation_method == "K-priors" and self.prior_prec_old is not None:
flat_grad.add_(self.previous_weights, alpha=-self.prior_prec_old)
# Add l2 regularisation
if self.param_groups[0]['weight_decay'] != 0:
parameters = self.param_groups[0]['params']
p = parameters_to_vector(parameters)
mu = p.clone().detach()
flat_grad.add_(mu, alpha=self.param_groups[0]['weight_decay'])
# Divide by train set size
flat_grad.div_(self.total_datapoints_this_iter)
# Check if converged
opt_cond = flat_grad.abs().max() <= tolerance_grad
ls_func_evals = 1
# update func eval
current_evals += ls_func_evals
state['func_evals'] += ls_func_evals
############################################################
# check conditions
############################################################
if n_iter == max_iter:
break
if current_evals >= max_eval:
break
# optimal condition
if opt_cond:
break
# lack of progress
if d.mul(t).abs().max() <= tolerance_change:
break
if abs(loss - prev_loss) < tolerance_change:
break
state['d'] = d
state['t'] = t
state['old_dirs'] = old_dirs
state['old_stps'] = old_stps
state['ro'] = ro
state['H_diag'] = H_diag
state['prev_flat_grad'] = prev_flat_grad
state['prev_loss'] = prev_loss
return orig_loss