From 6243e6c480f303f13c6b518bd5836de5eb5ad28b Mon Sep 17 00:00:00 2001 From: Sean MacAvaney Date: Tue, 17 Dec 2024 14:04:03 -0600 Subject: [PATCH] implementation --- pyterrier_dr/flex/ladr.py | 58 +++++++++++++++++++++++++++++++-------- 1 file changed, 47 insertions(+), 11 deletions(-) diff --git a/pyterrier_dr/flex/ladr.py b/pyterrier_dr/flex/ladr.py index 8484311..8fc9afd 100644 --- a/pyterrier_dr/flex/ladr.py +++ b/pyterrier_dr/flex/ladr.py @@ -1,4 +1,4 @@ -from typing import Optional +from typing import Optional, Union import numpy as np import pyterrier as pt import pyterrier_alpha as pta @@ -6,13 +6,14 @@ class LadrPreemptive(pt.Transformer): - def __init__(self, flex_index, graph, dense_scorer, num_results=1000, hops=1, drop_query_vec=False): + def __init__(self, flex_index, graph, dense_scorer, num_results=1000, hops=1, drop_query_vec=False, budget=False): self.flex_index = flex_index self.graph = graph self.dense_scorer = dense_scorer self.num_results = num_results self.hops = hops self.drop_query_vec = drop_query_vec + self.budget = budget def transform(self, inp): pta.validate.result_frame(inp, extra_columns=['query_vec']) @@ -23,6 +24,12 @@ def transform(self, inp): qcols += ['query_vec'] all_results = pta.DataFrameBuilder(qcols + ['docno', 'score', 'rank']) + budget = self.budget + if budget == True: # noqa: E712 truth value not okay here because budget can also be int + budget = self.num_results + elif budget == False: # noqa: E712 truth value not okay here because budget can also be int + budget = None + it = iter(inp.groupby('qid')) if self.flex_index.verbose: it = pt.tqdm(it) @@ -33,7 +40,15 @@ def transform(self, inp): for _ in range(self.hops): docids = self.graph.edges_data[docids].reshape(-1) ext_docids.append(docids) - ext_docids = np.unique(np.concatenate(ext_docids)) + if budget is None: + ext_docids = np.unique(np.concatenate(ext_docids)) + else: + # apply budget if needed. We want to prioritize the documents that came from the documents in the + # initial set (and then by the neighbors of those documents, etc), so partition by the index and take + # budget results in that order. + ext_docids, idxs = np.unique(np.concatenate(ext_docids), return_index=True) + if ext_docids.shape[0] > budget: + ext_docids = ext_docids[np.argpartition(idxs, budget)[:budget]] query_vecs = df['query_vec'].iloc[0].reshape(1, -1) scores = self.dense_scorer.score(query_vecs, ext_docids) scores = scores.reshape(-1) @@ -52,6 +67,10 @@ def transform(self, inp): )) return all_results.to_df() + def fuse_rank_cutoff(self, k): + if k < self.num_results and not self.budget: + return LadrPreemptive(self.flex_index, self.graph, self.dense_scorer, + num_results=k, hops=self.hops, drop_query_vec=self.drop_query_vec, budget=self.budget) def _pre_ladr(self, k: int = 16, @@ -59,7 +78,8 @@ def _pre_ladr(self, hops: int = 1, num_results: int = 1000, dense_scorer: Optional[pt.Transformer] = None, - drop_query_vec: bool = False + drop_query_vec: bool = False, + budget: Union[bool, int] = False, ) -> pt.Transformer: """Returns a proactive LADR (Lexicaly-Accelerated Dense Retrieval) transformer. @@ -69,6 +89,7 @@ def _pre_ladr(self, num_results (int): The number of results to return per query. dense_scorer (:class:`~pyterrier.Transformer`, optional): The dense scorer to use. Defaults to :meth:`np_scorer`. drop_query_vec (bool): Whether to drop the query vector from the output. + budget (bool or int): The maximum number of vectors to score. If ``False``, no maximum is applied. If ``True``, the budget is set to ``num_results``. If an integer, this value is used as the budget. Returns: :class:`~pyterrier.Transformer`: A proactive LADR transformer. @@ -76,13 +97,13 @@ def _pre_ladr(self, .. cite.dblp:: conf/sigir/KulkarniMGF23 """ graph = self.corpus_graph(k) if isinstance(k, int) else k - return LadrPreemptive(self, graph, num_results=num_results, hops=hops, dense_scorer=dense_scorer or self.scorer(), drop_query_vec=drop_query_vec) + return LadrPreemptive(self, graph, num_results=num_results, hops=hops, dense_scorer=dense_scorer or self.scorer(), drop_query_vec=drop_query_vec, budget=budget) FlexIndex.ladr = _pre_ladr # TODO: remove this alias later FlexIndex.pre_ladr = _pre_ladr FlexIndex.ladr_proactive = _pre_ladr class LadrAdaptive(pt.Transformer): - def __init__(self, flex_index, graph, dense_scorer, num_results=1000, depth=100, max_hops=None, drop_query_vec=False): + def __init__(self, flex_index, graph, dense_scorer, num_results=1000, depth=100, max_hops=None, drop_query_vec=False, budget=False): self.flex_index = flex_index self.graph = graph self.dense_scorer = dense_scorer @@ -90,11 +111,12 @@ def __init__(self, flex_index, graph, dense_scorer, num_results=1000, depth=100, self.depth = depth self.max_hops = max_hops self.drop_query_vec = drop_query_vec + self.budget = budget def fuse_rank_cutoff(self, k): - if k < self.num_results: + if k < self.num_results and not self.budget: return LadrAdaptive(self.flex_index, self.graph, self.dense_scorer, - num_results=k, depth=self.depth, max_hops=self.max_hops, drop_query_vec=self.drop_query_vec) + num_results=k, depth=self.depth, max_hops=self.max_hops, drop_query_vec=self.drop_query_vec, budget=self.budget) def transform(self, inp): pta.validate.result_frame(inp, extra_columns=['query_vec']) @@ -105,6 +127,12 @@ def transform(self, inp): qcols += ['query_vec'] all_results = pta.DataFrameBuilder(qcols + ['docno', 'score', 'rank']) + budget = self.budget + if budget == True: # noqa: E712 truth value not okay here because budget can also be int + budget = self.num_results + elif budget == False: # noqa: E712 truth value not okay here because budget can also be int + budget = None + it = iter(inp.groupby('qid')) if self.flex_index.verbose: it = pt.tqdm(it) @@ -112,10 +140,13 @@ def transform(self, inp): qdata = {col: [df[col].iloc[0]] for col in qcols} query_vecs = df['query_vec'].iloc[0].reshape(1, -1) docids = np.unique(docnos.inv[df['docno'].values]) + if budget is not None and docids.shape[0] > budget: + # apply budget if needed + docids = docids[:budget] scores = self.dense_scorer.score(query_vecs, docids).reshape(-1) scores = scores.reshape(-1) rnd = 0 - while self.max_hops is None or rnd < self.max_hops: + while (self.max_hops is None or rnd < self.max_hops) and (budget is None or scores.shape[0] < budget): if scores.shape[0] > self.depth: dids = docids[np.argpartition(scores, -self.depth)[-self.depth:]] else: @@ -124,6 +155,9 @@ def transform(self, inp): new_neighbour_dids = np.setdiff1d(neighbour_dids, docids, assume_unique=True) if new_neighbour_dids.shape[0] == 0: break + if budget is not None and new_neighbour_dids.shape[0] + scores.shape[0] > budget: + # apply budget if needed + new_neighbour_dids = new_neighbour_dids[:budget - scores.shape[0]] neighbour_scores = self.dense_scorer.score(query_vecs, new_neighbour_dids).reshape(-1) cat_dids = np.concatenate([docids, new_neighbour_dids]) idxs = np.argsort(cat_dids) @@ -152,7 +186,8 @@ def _ada_ladr(self, num_results: int = 1000, dense_scorer: Optional[pt.Transformer] = None, max_hops: Optional[int] = None, - drop_query_vec: bool = False + drop_query_vec: bool = False, + budget: Union[bool, int] = False, ) -> pt.Transformer: """Returns an adaptive LADR (Lexicaly-Accelerated Dense Retrieval) transformer. @@ -163,6 +198,7 @@ def _ada_ladr(self, dense_scorer (:class:`~pyterrier.Transformer`, optional): The dense scorer to use. Defaults to :meth:`np_scorer`. max_hops (int, optional): The maximum number of hops to consider. Defaults to ``None`` (no limit). drop_query_vec (bool): Whether to drop the query vector from the output. + budget (bool or int): The maximum number of vectors to score. If ``False``, no maximum is applied. If ``True``, the budget is set to ``num_results``. If an integer, this value is used as the budget. Returns: :class:`~pyterrier.Transformer`: An adaptive LADR transformer. @@ -170,6 +206,6 @@ def _ada_ladr(self, .. cite.dblp:: conf/sigir/KulkarniMGF23 """ graph = self.corpus_graph(k) if isinstance(k, int) else k - return LadrAdaptive(self, graph, num_results=num_results, dense_scorer=dense_scorer or self.scorer(), depth=depth, max_hops=max_hops, drop_query_vec=drop_query_vec) + return LadrAdaptive(self, graph, num_results=num_results, dense_scorer=dense_scorer or self.scorer(), depth=depth, max_hops=max_hops, drop_query_vec=drop_query_vec, budget=budget) FlexIndex.ada_ladr = _ada_ladr FlexIndex.ladr_adaptive = _ada_ladr