Skip to content

Compute Tree Biomass Using Canadian Allometric Equations

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

tesera/biomasscan

Repository files navigation

biomasscan

Lifecycle: experimental

The goal of biomasscan is to provide an easy, programmatic way of computing biomass from a tree list. The functions of this package were designed to mimic the functionality of Natural Resources Canada’s online tool, available here.

Installation

You can install the development version of biomasscan from GitHub with:

# install.packages("devtools")
devtools::install_github("tesera/biomasscan")

Example

Biomass can be estimated for a single tree, by passing the relevant attributes. For example, for a Jack pine, 15.2 meters tall and with a diameter of 21 centimeters at breast height, we get:

library(biomasscan)

compute_biomass_single_tree(height = 15.2, diameter = 21, 
                            species = 'Jack pine')
#> # A tibble: 4 × 3
#>   Species   Component biomass
#>   <chr>     <chr>       <dbl>
#> 1 Jack pine Bark         9.29
#> 2 Jack pine Branches    14.2 
#> 3 Jack pine Foliage      7.51
#> 4 Jack pine Wood       101.

As we can see, we get estimates of biomass (in kilograms) for four different components. We can turn this into a wide dataset by passing wide = TRUE:

compute_biomass_single_tree(height = 15.2, diameter = 21, 
                            species = 'Jack pine', wide = TRUE)
#> # A tibble: 1 × 5
#>   Species    Bark Branches Foliage  Wood
#>   <chr>     <dbl>    <dbl>   <dbl> <dbl>
#> 1 Jack pine  9.29     14.2    7.51  101.

We can also get the biomass estimates for a whole tree list:

library(tibble)

test_df <- tribble(
    ~spec, ~diam, ~ht,
    'Jack pine', 21, 15.2,
    'Trembling aspen', 32.1, 28,
    'Black spruce', 31, 22.6,
    'Black spruce', 21, 20.8,
    'Eucaplyptus', 14, 10.2
)

test_df
#> # A tibble: 5 × 3
#>   spec             diam    ht
#>   <chr>           <dbl> <dbl>
#> 1 Jack pine        21    15.2
#> 2 Trembling aspen  32.1  28  
#> 3 Black spruce     31    22.6
#> 4 Black spruce     21    20.8
#> 5 Eucaplyptus      14    10.2

compute_biomass(test_df, species = 'spec', diameter = 'diam', 
                height = 'ht')
#> # A tibble: 5 × 8
#>   spec             diam    ht  Bark Branches Foliage  Wood Total
#>   <chr>           <dbl> <dbl> <dbl>    <dbl>   <dbl> <dbl> <dbl>
#> 1 Jack pine        21    15.2  9.29     14.2    7.51  101.  132.
#> 2 Trembling aspen  32.1  28   78.1      43.9    7.36  402.  531.
#> 3 Black spruce     31    22.6 34.3      32.8   20.0   282.  369.
#> 4 Black spruce     21    20.8 16.5      10.6    8.29  132.  167.
#> 5 Eucaplyptus      14    10.2 NA        NA     NA      NA    NA

References

  • Lambert, M.-C., C.-H. Ung, and F. Raulier (2005). Canadian national biomass equations. Can. J. For. Res 35: 1996-2018.
  • Ung, C.-H., Bernier, P., Guo, X.-J. (2008). Canadian national biomass equations: new parameter estimates that include British Columbia data. Can. J. For. Res 38:1123-2232.

About

Compute Tree Biomass Using Canadian Allometric Equations

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages