This repository has been archived by the owner on Jul 2, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
internet_Example.py
74 lines (63 loc) · 2.34 KB
/
internet_Example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
import numpy as np
import math
#import pandas as pd
#import sys
input = np.array([[2.0, 1.0, 1.0, 2.0],
[-2.0, 1.0, -1.0, 2.0],
[0.0, 1.0, 0.0, 2.0],
[0.0, -1.0, 0.0, -2.0],
[0.0, -1.0, 0.0, -2.0]])
# Code here for importing data from file
noisy_input = input + .2 * np.random.random_sample((input.shape)) - .1
output = input
# Scale to [0,1]
scaled_input_1 = np.divide((noisy_input-noisy_input.min()), (noisy_input.max()-noisy_input.min()))
scaled_output_1 = np.divide((output-output.min()), (output.max()-output.min()))
# Scale to [-1,1]
scaled_input_2 = (scaled_input_1*2)-1
scaled_output_2 = (scaled_output_1*2)-1
input_data = scaled_input_2
output_data = scaled_output_2
# Autoencoder with 1 hidden layer
n_samp, n_input = input_data.shape
n_hidden = 2
x = tf.placeholder("float", [None, n_input])
# Weights and biases to hidden layer
Wh = tf.Variable(tf.random_uniform((n_input, n_hidden), -1.0 / math.sqrt(n_input), 1.0 / math.sqrt(n_input)))
bh = tf.Variable(tf.zeros([n_hidden]))
h = tf.nn.tanh(tf.matmul(x,Wh) + bh)
# Weights and biases to hidden layer
Wo = tf.transpose(Wh) # tied weights
bo = tf.Variable(tf.zeros([n_input]))
y = tf.nn.tanh(tf.matmul(h,Wo) + bo)
# Objective functions
y_ = tf.placeholder("float", [None,n_input])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
meansq = tf.reduce_mean(tf.square(y_-y))
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(meansq)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
n_rounds = 1000
batch_size = min(50, n_samp)
for i in range(n_rounds):
sample = np.random.randint(n_samp, size=batch_size)
#print sample
batch_xs = input_data[sample][:]
batch_ys = output_data[sample][:]
sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
if i % 100 == 0:
print i, sess.run(cross_entropy, feed_dict={x: batch_xs, y_:batch_ys}), sess.run(meansq, feed_dict={x: batch_xs, y_:batch_ys})
print "Target:"
print output_data
print "Final activations:"
print sess.run(y, feed_dict={x: input_data})
print "Final weights (input => hidden layer)"
print sess.run(Wh)
print "Final biases (input => hidden layer)"
print sess.run(bh)
print "Final biases (hidden layer => output)"
print sess.run(bo)
print "Final activations of hidden layer"
print sess.run(h, feed_dict={x: input_data})