-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
376 lines (291 loc) · 13.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# coding=utf-8
"""Utilities for logging and serialization"""
import os
import random
import numpy as np
import torch
from fp16 import FP16_Optimizer
import mpu
import deepspeed
from apex.optimizers import FusedAdam as Adam
from fp16 import FP16_Module
from fp16 import FP16_Optimizer
from learning_rates import AnnealingLR
from model import EncDecModel, EncDecConfig
from model import enc_dec_get_params_for_weight_decay_optimization, enc_dec_get_params_for_prompt_optimization
from model import DistributedDataParallel as DDP
def print_rank_0(message):
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(message, flush=True)
else:
print(message, flush=True)
def print_args(args):
"""Print arguments."""
print('arguments:', flush=True)
for arg in vars(args):
dots = '.' * (29 - len(arg))
print(' {} {} {}'.format(arg, dots, getattr(args, arg)), flush=True)
def save_rank_0(args, message):
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
with open(args.log_file, "a") as f:
f.write(message + "\n")
f.flush()
else:
with open(args.log_file, "a") as f:
f.write(message + "\n")
f.flush()
def save_preds_t0(args, name, prompt_names, step, all_res_prompt, all_preds_prompt, all_labels_prompt):
s = np.mean([np.mean([vv for vv in v.values()]) for v in all_res_prompt])
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
os.makedirs(os.path.join(args.save, "preds", name), exist_ok=True)
with open(os.path.join(args.save, "preds", name, "{:.2f}_{}.txt".format(s, step)), "w") as f:
f.write(str(all_res_prompt) + "\n")
for pid in range(len(prompt_names)):
f.write("\n" + str(prompt_names[pid]) + "\n")
for p, l in zip(all_preds_prompt[pid], all_labels_prompt[pid]):
f.write(str(p) + "\t\t" + str(l) + "\n")
def save_preds_prompts(args, name, dataset, step, res, all_preds_prompts, all_labels_prompts):
s = np.mean([v for v in res[0].values()])
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
os.makedirs(os.path.join(args.save, "preds", name), exist_ok=True)
with open(os.path.join(args.save, "preds", name, "{:.2f}_{}.txt".format(s, step)), "w") as f:
f.write(str(res) + "\n")
for pid in dataset.all_data[name]["prompt_ids"]:
f.write("\n" + str(dataset.all_data[name]["prompt_templates"][pid]) + "\n")
for p, l in zip(all_preds_prompts[pid], all_labels_prompts[pid]):
f.write(str(p) + "\t\t" + str(l) + "\n")
def save_preds(args, name, step, res, all_preds, all_labels):
s = np.mean([v for v in res[0].values()])
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
os.makedirs(os.path.join(args.save, "preds", name), exist_ok=True)
with open(os.path.join(args.save, "preds", name, "{:.2f}_{}.txt".format(s, step)), "w") as f:
f.write(str(res) + "\n")
for p, l in zip(all_preds, all_labels):
f.write(str(p) + "\t\t" + str(l) + "\n")
def get_model(args, vocab_size, prompt_config=None):
"""Build the model."""
print_rank_0('building Enc-Dec model ...')
config = EncDecConfig.from_json_file(args.model_config)
config.vocab_size = vocab_size
model = EncDecModel(config,
parallel_output=True,
checkpoint_activations=args.checkpoint_activations,
checkpoint_num_layers=args.checkpoint_num_layers,
prompt_config=prompt_config,
args=args)
if mpu.get_data_parallel_rank() == 0:
print(' > number of parameters on model parallel rank {}: {}'.format(
mpu.get_model_parallel_rank(),
sum([p.nelement() for p in model.parameters()])), flush=True)
# To prevent OOM for model sizes that cannot fit in GPU memory in full precision
if args.deepspeed and args.fp16:
model.half()
# GPU allocation.
model.cuda(torch.cuda.current_device())
if args.prompt_tune and prompt_config["init_scratch"]:
model.init_prompt_embeds()
# Fp16 conversion.
if args.fp16:
model = FP16_Module(model)
# Wrap model for distributed training.
model = DDP(model)
return model
def get_optimizer(model, args, prompt_config=None):
"""Set up the optimizer."""
# Build parameter groups (weight decay and non-decay).
while isinstance(model, (DDP, FP16_Module)):
model = model.module
if args.prompt_tune and prompt_config["fix_model"]:
param_groups = enc_dec_get_params_for_prompt_optimization(model)
else:
param_groups = enc_dec_get_params_for_weight_decay_optimization(model)
# Add model parallel attribute if it is not set.
for param_group in param_groups:
for param in param_group['params']:
if not hasattr(param, 'model_parallel'):
param.model_parallel = False
if args.cpu_optimizer:
if args.cpu_torch_adam:
cpu_adam_optimizer = torch.optim.Adam
else:
from deepspeed.ops.adam import DeepSpeedCPUAdam
cpu_adam_optimizer = DeepSpeedCPUAdam
optimizer = cpu_adam_optimizer(param_groups,
lr=args.lr, weight_decay=args.weight_decay)
else:
# Use FusedAdam.
optimizer = Adam(param_groups,
lr=args.lr, weight_decay=args.weight_decay)
print(f'Optimizer = {optimizer.__class__.__name__}')
if args.deepspeed:
# fp16 wrapper is not required for DeepSpeed.
return optimizer
# Wrap into fp16 optimizer.
if args.fp16:
optimizer = FP16_Optimizer(optimizer,
static_loss_scale=args.loss_scale,
dynamic_loss_scale=args.dynamic_loss_scale,
dynamic_loss_args={
'scale_window': args.loss_scale_window,
'min_scale': args.min_scale,
'delayed_shift': args.hysteresis})
if torch.distributed.get_rank() == 0:
print(optimizer.param_groups)
return optimizer
def get_learning_rate_scheduler(optimizer, args):
"""Build the learning rate scheduler."""
# Add linear learning rate scheduler.
if args.lr_decay_iters is not None:
num_iters = args.lr_decay_iters
else:
num_iters = args.train_iters
num_iters = max(1, num_iters)
init_step = -1
if args.warmup_iter > 0:
warmup_iter = args.warmup_iter
else:
warmup_iter = args.warmup * num_iters
lr_scheduler = AnnealingLR(optimizer,
start_lr=args.lr,
warmup_iter=warmup_iter,
num_iters=num_iters,
decay_style=args.lr_decay_style,
last_iter=init_step,
gradient_accumulation_steps=args.gradient_accumulation_steps)
return lr_scheduler
def setup_model_and_optimizer(args, vocab_size, ds_config, prompt_config=None, set_optim=True):
"""Setup model and optimizer."""
model = get_model(args, vocab_size, prompt_config)
if set_optim:
optimizer = get_optimizer(model, args, prompt_config)
lr_scheduler = get_learning_rate_scheduler(optimizer, args)
else:
optimizer, lr_scheduler = None, None
if args.deepspeed:
print_rank_0("DeepSpeed is enabled.")
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
optimizer=optimizer,
args=args,
lr_scheduler=lr_scheduler,
mpu=mpu,
dist_init_required=False,
config_params=ds_config
)
print(args.load)
if args.load is not None:
args.iteration = load_checkpoint(model, optimizer, lr_scheduler, args, prompt_config)
else:
args.iteration = 0
return model, optimizer, lr_scheduler
def set_deepspeed_activation_checkpointing(args):
deepspeed.checkpointing.configure(mpu, deepspeed_config=args.deepspeed_config, num_checkpoints=args.num_checkpoints)
mpu.checkpoint = deepspeed.checkpointing.checkpoint
mpu.get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
mpu.model_parallel_cuda_manual_seed = deepspeed.checkpointing.model_parallel_cuda_manual_seed
def initialize_distributed(args):
"""Initialize torch.distributed."""
# Manually set the device ids.
device = args.rank % torch.cuda.device_count()
if args.local_rank is not None:
device = args.local_rank
torch.cuda.set_device(device)
# Call the init process
deepspeed.init_distributed()
# Set the model-parallel / data-parallel communicators.
mpu.initialize_model_parallel(args.model_parallel_size)
# Optional DeepSpeed Activation Checkpointing Features
if args.deepspeed and args.deepspeed_activation_checkpointing:
set_deepspeed_activation_checkpointing(args)
def set_random_seed(seed):
"""Set random seed for reproducability."""
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
mpu.model_parallel_cuda_manual_seed(seed)
def save_checkpoint(iteration, model, optimizer,
lr_scheduler, args, save_dir=None):
"""Save a model checkpoint."""
save_ds_checkpoint(iteration, model, args, save_dir)
# Wait so everyone is done (necessary)
torch.distributed.barrier()
# And update the latest iteration
if torch.distributed.get_rank() == 0:
tracker_filename = os.path.join(args.save if save_dir is None else save_dir, 'latest_checkpointed_iteration.txt')
with open(tracker_filename, 'w') as f:
f.write(str(iteration))
# Wait so everyone is done (not necessary)
torch.distributed.barrier()
def save_ds_checkpoint(iteration, model, args, save_dir=None):
"""Save a model checkpoint."""
sd = {}
sd['iteration'] = iteration
if args.save_prompt_only:
prompt = model.module.module.module.get_prompt_embeds()
save_prompt(args.save if save_dir is None else save_dir, iteration, prompt["encoder"])
else:
model.save_checkpoint(args.save if save_dir is None else save_dir, str(iteration), client_state = sd, save_zero=False)
def save_prompt(save_dir, iteration, prompt_embeds):
save_path = os.path.join(save_dir, "prompt-{}.pt".format(iteration))
if torch.distributed.get_rank() == 0:
torch.save(prompt_embeds, save_path)
def get_checkpoint_iteration(args):
# Read the tracker file and set the iteration.
tracker_filename = os.path.join(args.load, 'latest_checkpointed_iteration.txt')
if not os.path.isfile(tracker_filename):
print_rank_0('WARNING: could not find the metadata file {} '.format(
tracker_filename))
print_rank_0(' will not load any checkpoints and will start from '
'random')
return 0, False, False
iteration = 0
release = False
with open(tracker_filename, 'r') as f:
metastring = f.read().strip()
try:
iteration = int(metastring)
except ValueError:
release = metastring == 'release'
if not release:
print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
tracker_filename))
exit()
assert iteration > 0 or release, 'error parsing metadata file {}'.format(
tracker_filename)
return iteration, release, True
def load_prompt(load_dir):
prompt = torch.load(load_dir, map_location=lambda storage, loc: storage)
return prompt
def load_checkpoint(model, optimizer, lr_scheduler, args, prompt_config=None):
"""Load a model checkpoint."""
iteration, release, success = get_checkpoint_iteration(args)
if not success:
return 0
mp_rank = mpu.get_model_parallel_rank()
checkpoint_name = os.path.join(args.load,
str(iteration),
'mp_rank_{:02d}'.format(mp_rank) + '_model_states.pt')
if not os.path.exists(checkpoint_name):
print('Client provided checkpoint load path: {} does not exist ... skip checkpoint load'.format(checkpoint_name))
if mpu.get_data_parallel_rank() == 0:
print("Unable to load checkpoint.")
return iteration
print('loading checkpoint: {}'.format(checkpoint_name))
sd = torch.load(checkpoint_name, map_location=lambda storage, loc: storage)
if args.prompt_tune:
load_prompt_path = prompt_config.get("load_prompt")
if load_prompt_path is not None and len(load_prompt_path) > 0:
prompt_embeds = load_prompt(load_prompt_path)
sd["module"]["encoder.prompt_embeds.weight"] = prompt_embeds
model.module.load_state_dict(sd["module"], strict=False)
iteration = sd['iteration']
torch.distributed.barrier()
if mpu.get_data_parallel_rank() == 0:
print(' successfully loaded {}'.format(checkpoint_name))
return iteration