-
Notifications
You must be signed in to change notification settings - Fork 9
/
utils.py
226 lines (191 loc) · 8.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import logging
import json
import numpy as np
from collections import OrderedDict
import ontology
def py2np(list):
return np.array(list)
def write_dict(fn, dic):
with open(fn, 'w') as f:
json.dump(dic, f, indent=2)
def f1_score(label_list, pred_list):
tp = len([t for t in pred_list if t in label_list])
fp = max(0, len(pred_list) - tp)
fn = max(0, len(label_list) - tp)
precision = tp / (tp + fp + 1e-10)
recall = tp / (tp + fn + 1e-10)
f1 = 2 * precision * recall / (precision + recall + 1e-10)
return f1
class Vocab(object):
def __init__(self, vocab_size=0):
self.vocab_size = vocab_size
self.vocab_size_oov = 0 # get after construction
self._idx2word = {} #word + oov
self._word2idx = {} # word
self._freq_dict = {} #word + oov
for w in ['<pad>', '<go_r>', '<unk>', '<go_b>', '<go_a>','<eos_u>', '<eos_r>',
'<eos_b>', '<eos_a>', '<go_d>','<eos_d>']:
self._absolute_add_word(w)
def _absolute_add_word(self, w):
idx = len(self._idx2word)
self._idx2word[idx] = w
self._word2idx[w] = idx
def add_word(self, word):
if word not in self._freq_dict:
self._freq_dict[word] = 0
self._freq_dict[word] += 1
def has_word(self, word):
return self._freq_dict.get(word)
def _add_to_vocab(self, word):
if word not in self._word2idx:
idx = len(self._idx2word)
self._idx2word[idx] = word
self._word2idx[word] = idx
def construct(self):
l = sorted(self._freq_dict.keys(), key=lambda x: -self._freq_dict[x])
print('Vocabulary size including oov: %d' % (len(l) + len(self._idx2word)))
if len(l) + len(self._idx2word) < self.vocab_size:
logging.warning('actual label set smaller than that configured: {}/{}'
.format(len(l) + len(self._idx2word), self.vocab_size))
for word in ontology.all_domains + ['general']:
word = '[' + word + ']'
self._add_to_vocab(word)
for word in ontology.all_acts:
word = '[' + word + ']'
self._add_to_vocab(word)
for word in ontology.all_slots:
self._add_to_vocab(word)
for word in l:
if word.startswith('[value_') and word.endswith(']'):
self._add_to_vocab(word)
for word in l:
self._add_to_vocab(word)
self.vocab_size_oov = len(self._idx2word)
def load_vocab(self, vocab_path):
self._freq_dict = json.loads(open(vocab_path+'.freq.json', 'r').read())
self._word2idx = json.loads(open(vocab_path+'.word2idx.json', 'r').read())
self._idx2word = {}
for w, idx in self._word2idx.items():
self._idx2word[idx] = w
self.vocab_size_oov = len(self._idx2word)
print('vocab file loaded from "'+vocab_path+'"')
print('Vocabulary size including oov: %d' % (self.vocab_size_oov))
def save_vocab(self, vocab_path):
_freq_dict = OrderedDict(sorted(self._freq_dict.items(), key=lambda kv:kv[1], reverse=True))
write_dict(vocab_path+'.word2idx.json', self._word2idx)
write_dict(vocab_path+'.freq.json', _freq_dict)
def encode(self, word, include_oov=True):
if include_oov:
if self._word2idx.get(word, None) is None:
raise ValueError('Unknown word: %s. Vocabulary should include oovs here.'%word)
return self._word2idx[word]
else:
word = '<unk>' if word not in self._word2idx else word
return self._word2idx[word]
def sentence_encode(self, word_list):
return [self.encode(_) for _ in word_list]
def oov_idx_map(self, idx):
return 2 if idx > self.vocab_size else idx
def sentence_oov_map(self, index_list):
return [self.oov_idx_map(_) for _ in index_list]
def decode(self, idx, indicate_oov=False):
if not self._idx2word.get(idx):
raise ValueError('Error idx: %d. Vocabulary should include oovs here.'%idx)
if not indicate_oov or idx<self.vocab_size:
return self._idx2word[idx]
else:
return self._idx2word[idx]+'(o)'
def sentence_decode(self, index_list, eos=None, indicate_oov=False):
l = [self.decode(_, indicate_oov) for _ in index_list]
if not eos or eos not in l:
return ' '.join(l)
else:
idx = l.index(eos)
return ' '.join(l[:idx])
def nl_decode(self, l, eos=None):
return [self.sentence_decode(_, eos) + '\n' for _ in l]
def padSeqs(sequences, maxlen=None, truncated = False, pad_method='post',
trunc_method='pre', dtype='int32', value=0.):
if not hasattr(sequences, '__len__'):
raise ValueError('`sequences` must be iterable.')
lengths = []
for x in sequences:
if not hasattr(x, '__len__'):
raise ValueError('`sequences` must be a list of iterables. '
'Found non-iterable: ' + str(x))
lengths.append(len(x))
num_samples = len(sequences)
seq_maxlen = np.max(lengths)
if maxlen is not None and truncated:
maxlen = min(seq_maxlen, maxlen)
else:
maxlen = seq_maxlen
# take the sample shape from the first non empty sequence
# checking for consistency in the main loop below.
sample_shape = tuple()
for s in sequences:
if len(s) > 0:
sample_shape = np.asarray(s).shape[1:]
break
x = (np.ones((num_samples, maxlen) + sample_shape) * value).astype(dtype)
for idx, s in enumerate(sequences):
if not len(s):
print('empty list/array was found')
continue # empty list/array was found
if trunc_method == 'pre':
trunc = s[-maxlen:]
elif trunc_method == 'post':
trunc = s[:maxlen]
else:
raise ValueError('Truncating type "%s" not understood' % trunc_method)
# check `trunc` has expected shape
trunc = np.asarray(trunc, dtype=dtype)
if trunc.shape[1:] != sample_shape:
raise ValueError('Shape of sample %s of sequence at position %s is different from expected shape %s' %
(trunc.shape[1:], idx, sample_shape))
if pad_method == 'post':
x[idx, :len(trunc)] = trunc
elif pad_method == 'pre':
x[idx, -len(trunc):] = trunc
else:
raise ValueError('Padding type "%s" not understood' % pad_method)
return x
def get_glove_matrix(glove_path, vocab, initial_embedding_np):
"""
return a glove embedding matrix
:param self:
:param glove_file:
:param initial_embedding_np:
:return: np array of [V,E]
"""
ef = open(glove_path, 'r', encoding='UTF-8')
cnt = 0
vec_array = initial_embedding_np
old_avg = np.average(vec_array)
old_std = np.std(vec_array)
vec_array = vec_array.astype(np.float32)
new_avg, new_std = 0, 0
for line in ef.readlines():
line = line.strip().split(' ')
word, vec = line[0], line[1:]
vec = np.array(vec, np.float32)
if not vocab.has_word(word):
continue
word_idx = vocab.encode(word)
if word_idx <vocab.vocab_size:
cnt += 1
vec_array[word_idx] = vec
new_avg += np.average(vec)
new_std += np.std(vec)
new_avg /= cnt
new_std /= cnt
ef.close()
logging.info('%d known embedding. old mean: %f new mean %f, old std %f new std %f' % (cnt, old_avg,
new_avg, old_std, new_std))
return vec_array
def position_encoding_init(self, n_position, d_pos_vec):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / d_pos_vec) for j in range(d_pos_vec)]
if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1
return position_enc