-
Notifications
You must be signed in to change notification settings - Fork 14
/
1203-sort-items-by-groups-respecting-dependencies.py
59 lines (52 loc) · 1.98 KB
/
1203-sort-items-by-groups-respecting-dependencies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from collections import deque
class Solution:
def sortItems(self, n: int, m: int, group: List[int], beforeItems: List[List[int]]) -> List[int]:
def topo(graph, indegrees):
queue = deque([])
for i, indegree in enumerate(indegrees):
if indegree == 0:
queue.append(i)
dag = []
while queue:
node = queue.popleft()
dag.append(node)
for neighbor in graph[node]:
indegrees[neighbor] -= 1
if indegrees[neighbor] == 0:
queue.append(neighbor)
return dag
group_id = m
for i, g in enumerate(group):
if g == - 1:
group[i] = group_id
group_id += 1
group_graph = [[] for _ in range(group_id)]
group_indegrees = [0 for _ in range(group_id)]
item_graph = [[] for _ in range(n)]
item_indegrees = [0 for _ in range(n)]
for i in range(n):
g = group[i]
for before_item in beforeItems[i]:
before_group = group[before_item]
if before_group != g:
group_graph[before_group].append(g)
group_indegrees[g] += 1
item_graph[before_item].append(i)
item_indegrees[i] += 1
group_dag = topo(group_graph, group_indegrees)
if len(group_dag) != len(group_graph):
return []
item_dag = topo(item_graph, item_indegrees)
if len(item_dag) != len(item_graph):
return []
group_items = [[] for _ in range(group_id)]
for item in item_dag:
g = group[item]
group_items[g].append(item)
res = []
for g in group_dag:
res.extend(group_items[g])
return res
# time O(n**2 + E for groups + E for items)
# space O(n**2)
# using graph and kahn and topological sort