-
Notifications
You must be signed in to change notification settings - Fork 14
/
1489-find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree.py
65 lines (57 loc) · 2.02 KB
/
1489-find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class UnionFind:
def __init__(self, n):
self.parent = [i for i in range(n)]
self.rank = [0 for _ in range(n)]
def find(self, p):
while p != self.parent[p]:
self.parent[p] = self.parent[self.parent[p]]
p = self.parent[p]
return p
def union(self, p, q):
root_p = self.find(p)
root_q = self.find(q)
if root_p == root_q:
return
if self.rank[root_p] > self.rank[root_q]:
self.parent[root_q] = root_p
elif self.rank[root_p] < self.rank[root_q]:
self.parent[root_p] = root_q
else:
self.parent[root_p] = root_q
self.rank[root_q] += 1
def is_connected(self, p, q):
return self.find(p) == self.find(q)
class Solution:
def findCriticalAndPseudoCriticalEdges(self, n: int, edges: List[List[int]]) -> List[List[int]]:
sort_edges = []
for i, (p, q, w) in enumerate(edges):
sort_edges.append((w, p, q, i))
sort_edges.sort()
def mst(exclude=None, include=None):
uf = UnionFind(n)
res = []
if include != None:
p, q, w = edges[include]
uf.union(p, q)
res.append(w)
for w, p, q, i in sort_edges:
if i == exclude or i == include:
continue
if not uf.is_connected(p, q):
uf.union(p, q)
res.append(w)
return sum(res) if len(res) == n - 1 else float('inf')
cost = mst()
pseudo_criticals = set()
for i in range(len(edges)):
if cost == mst(include=i):
pseudo_criticals.add(i)
criticals = []
for i in list(pseudo_criticals):
if cost < mst(exclude=i):
criticals.append(i)
pseudo_criticals.remove(i)
return [criticals, list(pseudo_criticals)]
# time O(E**2)
# space O(V + E)
# using graph and kruskal and mst and union find