-
Notifications
You must be signed in to change notification settings - Fork 0
/
mincount_c_curve.cpp
286 lines (247 loc) · 8.98 KB
/
mincount_c_curve.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* c_curve: plot a complexity curve by subsamping sequenced reads
* and counting UMIs
*
* Copyright (C) 2012 University of Southern California and
* Andrew D. Smith and Timothy Daley
*
* Authors: Andrew D. Smith and Timothy Daley
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iomanip>
#include <numeric>
#include <fstream>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include "OptionParser.hpp"
#include "smithlab_utils.hpp"
#include "GenomicRegion.hpp"
#include "load_data_for_complexity.hpp"
using std::string;
using std::vector;
using std::endl;
using std::cerr;
using std::setw;
using std::fixed;
using std::setprecision;
using std::tr1::unordered_map;
static double
sample_count_reads_w_mincount(const gsl_rng *rng,
const vector<size_t> &full_umis,
const size_t sample_size,
const size_t mincount) {
vector<size_t> sample_umis(sample_size);
gsl_ran_choose(rng, (size_t *)&sample_umis.front(), sample_size,
(size_t *)&full_umis.front(), full_umis.size(),
sizeof(size_t));
double number_observed = 0.0;
size_t current_count = 1;
for (size_t i = 1; i < sample_umis.size(); i++){
if(sample_umis[i] == sample_umis[i-1])
current_count++;
else{
if(current_count >= mincount)
number_observed++;
current_count = 1;
}
}
if(current_count >= mincount)
number_observed++;
return number_observed;
}
int main(int argc, const char **argv) {
try {
/* FILES */
string outfile;
size_t lower_limit = 1000000;
size_t upper_limit = 0;
size_t step_size = 1000000;
size_t mincount = 2;
bool VERBOSE = false;
bool VALS_INPUT = false;
bool PAIRED_END = false;
bool HIST_INPUT = false;
#ifdef HAVE_SAMTOOLS
bool BAM_FORMAT_INPUT = false;
size_t MAX_SEGMENT_LENGTH = 5000;
#endif
/****************** GET COMMAND LINE ARGUMENTS ***************************/
OptionParser opt_parse("c_curve", "plot a complexity curve by subsamping "
"sequenced reads and counting UMIs",
"<bed-file|bam-file>");
opt_parse.add_opt("output", 'o', "Name of output file (default: stdout)",
false , outfile);
opt_parse.add_opt("mincount",'m', "minimum # reads required to count a position",
false, mincount);
opt_parse.add_opt("lower", 'l', "lower limit for samples",
false , lower_limit);
opt_parse.add_opt("upper", 'u', "upper limit for samples",
false , upper_limit);
opt_parse.add_opt("step", 's', "step size for samples",
false , step_size);
opt_parse.add_opt("verbose", 'v', "print more run information",
false , VERBOSE);
#ifdef HAVE_SAMTOOLS
opt_parse.add_opt("bam", 'B', "input is in BAM format",
false, BAM_FORMAT_INPUT);
opt_parse.add_opt("seg_len", 'l', "maximum segment length when merging "
"paired end bam reads (default: "
+ toa(MAX_SEGMENT_LENGTH) + ")",
false, MAX_SEGMENT_LENGTH);
#endif
opt_parse.add_opt("pe", 'P', "input is paired end read file",
false, PAIRED_END);
opt_parse.add_opt("vals", 'V',
"input is a text file containing only the observed counts",
false, VALS_INPUT);
opt_parse.add_opt("hist", 'H',
"input is a text file containing the observed histogram",
false, HIST_INPUT);
vector<string> leftover_args;
opt_parse.parse(argc, argv, leftover_args);
if (argc == 1 || opt_parse.help_requested()) {
cerr << opt_parse.help_message() << endl;
return EXIT_SUCCESS;
}
if (opt_parse.about_requested()) {
cerr << opt_parse.about_message() << endl;
return EXIT_SUCCESS;
}
if (opt_parse.option_missing()) {
cerr << opt_parse.option_missing_message() << endl;
return EXIT_SUCCESS;
}
if (leftover_args.empty()) {
cerr << opt_parse.help_message() << endl;
return EXIT_SUCCESS;
}
const string input_file_name = leftover_args.front();
/**********************************************************************/
// Setup the random number generator
gsl_rng_env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
srand(time(0) + getpid());
gsl_rng_set(rng, rand());
vector<double> counts_hist;
size_t n_reads = 0;
// LOAD VALUES
if(HIST_INPUT){
if(VERBOSE)
cerr << "HIST_INPUT" << endl;
n_reads = load_histogram(input_file_name, counts_hist);
}
else if(VALS_INPUT){
if(VERBOSE)
cerr << "VALS_INPUT" << endl;
n_reads = load_counts(input_file_name, counts_hist);
}
#ifdef HAVE_SAMTOOLS
else if (BAM_FORMAT_INPUT && PAIRED_END){
if(VERBOSE)
cerr << "PAIRED_END_BAM_INPUT" << endl;
const size_t MAX_READS_TO_HOLD = 5000000;
size_t n_paired = 0;
size_t n_mates = 0;
n_reads = load_counts_BAM_pe(VERBOSE, input_file_name,
MAX_SEGMENT_LENGTH,
MAX_READS_TO_HOLD, n_paired,
n_mates, counts_hist);
if(VERBOSE){
cerr << "MERGED PAIRED END READS = " << n_paired << endl;
cerr << "MATES PROCESSED = " << n_mates << endl;
}
}
else if(BAM_FORMAT_INPUT){
if(VERBOSE)
cerr << "BAM_INPUT" << endl;
n_reads = load_counts_BAM_se(input_file_name, counts_hist);
}
#endif
else if(PAIRED_END){
if(VERBOSE)
cerr << "PAIRED_END_BED_INPUT" << endl;
n_reads = load_counts_BED_pe(input_file_name, counts_hist);
}
else{ // default is single end bed file
if(VERBOSE)
cerr << "BED_INPUT" << endl;
n_reads = load_counts_BED_se(input_file_name, counts_hist);
}
const size_t max_observed_count = counts_hist.size() - 1;
// const double distinct_reads = accumulate(counts_hist.begin(),
// counts_hist.end(), 0.0);
// ENSURE THAT THE MAX TERMS ARE ACCEPTABLE
size_t counts_before_first_zero = 1;
while (counts_before_first_zero < counts_hist.size() &&
counts_hist[counts_before_first_zero] > 0)
++counts_before_first_zero;
const double initial_observed
= accumulate(counts_hist.begin() + mincount, counts_hist.end(), 0.0);
double values_sum = 0.0;
for(size_t i = 0; i < counts_hist.size(); i++)
values_sum += i*counts_hist[i];
const size_t distinct_counts =
static_cast<size_t>(std::count_if(counts_hist.begin(), counts_hist.end(),
bind2nd(std::greater<double>(), 0.0)));
if (VERBOSE)
cerr << "TOTAL READS = " << n_reads << endl
<< "INITIAL MINCOUNT = " << initial_observed << endl
<< "DISTINCT COUNTS = " << distinct_counts << endl
<< "MAX COUNT = " << max_observed_count << endl
<< "COUNTS OF 1 = " << counts_hist[1] << endl;
if (VERBOSE) {
// OUTPUT THE ORIGINAL HISTOGRAM
cerr << "OBSERVED COUNTS (" << counts_hist.size() << ")" << endl;
for (size_t i = 0; i < counts_hist.size(); i++)
if (counts_hist[i] > 0)
cerr << i << '\t' << static_cast<size_t>(counts_hist[i]) << endl;
cerr << endl;
}
//construct umi vector to sample from
vector<size_t> umis;
size_t umi = 1;
for(size_t i = 1; i < counts_hist.size(); i++){
for(size_t j = 0; j < counts_hist[i]; j++){
for(size_t k = 0; k < i; k++)
umis.push_back(umi);
umi++;
}
}
assert(umis.size() == static_cast<size_t>(values_sum));
if (upper_limit == 0)
upper_limit = umis.size();
else
upper_limit = std::min(umis.size(), upper_limit);
std::ofstream of;
if (!outfile.empty()) of.open(outfile.c_str());
std::ostream out(outfile.empty() ? std::cout.rdbuf() : of.rdbuf());
out << "total_reads" << "\t" << "distinct_reads" << endl;
out << 0 << "\t" << 0 << endl;
for (size_t i = lower_limit; i <= upper_limit; i += step_size) {
if (VERBOSE)
cerr << "sample size: " << i << endl;
out << i << "\t" << sample_count_reads_w_mincount(rng, umis,
i, mincount) << endl;
}
}
catch (SMITHLABException &e) {
cerr << "ERROR:\t" << e.what() << endl;
return EXIT_FAILURE;
}
catch (std::bad_alloc &ba) {
cerr << "ERROR: could not allocate memory" << endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}