-
Notifications
You must be signed in to change notification settings - Fork 0
/
mincount_extrap.cpp
659 lines (552 loc) · 21.5 KB
/
mincount_extrap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/* lc_extrap:
*
* Copyright (C) 2012 University of Southern California and
* Andrew D. Smith and Timothy Daley
*
* Authors: Andrew D. Smith and Timothy Daley
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <fstream>
#include <numeric>
#include <vector>
#include <gsl/gsl_cdf.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_statistics_double.h>
#include <OptionParser.hpp>
#include <smithlab_utils.hpp>
#include <GenomicRegion.hpp>
#include <RNG.hpp>
#include <smithlab_os.hpp>
#include "continued_fraction.hpp"
#include "load_data_for_complexity.hpp"
using std::string;
using std::vector;
using std::endl;
using std::cerr;
using std::max;
using std::setw;
using std::fixed;
using std::setprecision;
using std::tr1::unordered_map;
// vals_hist[j] = n_{j} = # (counts = j)
// vals_hist_distinct_counts[k] = kth index j s.t. vals_hist[j] > 0
// stores kth index of vals_hist that is positive
// distinct_counts_hist[k] = vals_hist[vals_hist_distinct_counts[k]]
// stores the kth positive value of vals_hist
void
resample_hist(const gsl_rng *rng, const vector<size_t> &vals_hist_distinct_counts,
const vector<double> &distinct_counts_hist,
vector<double> &out_hist) {
vector<unsigned int> sample_distinct_counts_hist(distinct_counts_hist.size(), 0);
const unsigned int distinct =
static_cast<unsigned int>(accumulate(distinct_counts_hist.begin(),
distinct_counts_hist.end(), 0.0));
gsl_ran_multinomial(rng, distinct_counts_hist.size(), distinct,
&distinct_counts_hist.front(),
&sample_distinct_counts_hist.front());
out_hist.clear();
out_hist.resize(vals_hist_distinct_counts.back() + 1, 0.0);
for(size_t i = 0; i < sample_distinct_counts_hist.size(); i++)
out_hist[vals_hist_distinct_counts[i]] =
static_cast<double>(sample_distinct_counts_hist[i]);
}
static double
sample_count_reads_w_mincount(const gsl_rng *rng,
const vector<size_t> &full_umis,
const size_t sample_size,
const size_t mincount) {
vector<size_t> sample_umis(sample_size);
gsl_ran_choose(rng, (size_t *)&sample_umis.front(), sample_size,
(size_t *)&full_umis.front(), full_umis.size(),
sizeof(size_t));
double number_observed = 0.0;
size_t current_count = 1;
for (size_t i = 1; i < sample_umis.size(); i++){
if(sample_umis[i] == sample_umis[i-1])
current_count++;
else{
if(current_count >= mincount)
number_observed++;
current_count = 1;
}
}
if(current_count >= mincount)
number_observed++;
return number_observed;
}
static bool
check_mincount_estimates_stability(const vector<double> &estimates,
const double max_change_per_time_step) {
// make sure that the estimate is increasing in the time_step and
// is below the initial distinct per step_size
for (size_t i = 1; i < estimates.size(); ++i){
if(!std::isfinite(estimates[i])){
return false;
}
if ((estimates[i] < estimates[i - 1]) ||
(estimates[i] - estimates[i - 1] > max_change_per_time_step)){
return false;
}
}
return true;
}
void
estimates_bootstrap(const bool VERBOSE, const vector<double> &orig_hist,
const size_t bootstraps, const size_t orig_max_terms,
const int diagonal, const double step_size,
const double max_extrapolation, const size_t mincount,
vector< vector<double> > &full_estimates) {
// clear returning vectors
full_estimates.clear();
//setup rng
srand(time(0) + getpid());
gsl_rng_env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
gsl_rng_set(rng, rand());
const double initial_observed
= accumulate(orig_hist.begin() + mincount, orig_hist.end(), 0.0);
vector<size_t> orig_hist_distinct_counts;
vector<double> distinct_orig_hist;
for (size_t i = 0; i < orig_hist.size(); i++){
if (orig_hist[i] > 0) {
orig_hist_distinct_counts.push_back(i);
distinct_orig_hist.push_back(orig_hist[i]);
}
}
double vals_sum = 0.0;
for(size_t i = 0; i < orig_hist.size(); i++)
vals_sum += i*orig_hist[i];
for (size_t iter = 0;
(iter < 2*bootstraps && full_estimates.size() < bootstraps); ++iter) {
vector<double> mincount_vector;
vector<double> hist;
resample_hist(rng, orig_hist_distinct_counts, distinct_orig_hist, hist);
//resize boot_hist to remove excess zeros
while (hist.back() == 0)
hist.pop_back();
//construct umi vector to sample from
vector<size_t> umis;
size_t umi = 1;
for(size_t i = 1; i < hist.size(); i++){
for(size_t j = 0; j < hist[i]; j++){
for(size_t k = 0; k < i; k++)
umis.push_back(umi);
umi++;
}
}
// assert(umis.size() == static_cast<size_t>(vals_sum));
// compute complexity curve by random sampling w/out replacement
size_t upper_limit = static_cast<size_t>(vals_sum);
size_t step = static_cast<size_t>(step_size);
size_t sample = step;
while(sample <= upper_limit){
mincount_vector.push_back(sample_count_reads_w_mincount(rng, umis, sample, mincount));
sample += step;
}
// ENSURE THAT THE MAX TERMS ARE ACCEPTABLE
size_t counts_before_first_zero = 1;
while (counts_before_first_zero < hist.size() &&
hist[counts_before_first_zero] > 0)
++counts_before_first_zero;
size_t max_terms = std::min(orig_max_terms, counts_before_first_zero - mincount);
max_terms = max_terms - (max_terms % 2 == 0);
const ContinuedFractionApproximation
mincount_cfa(diagonal, max_terms);
const ContinuedFraction
mincount_cf(mincount_cfa.optimal_cont_frac_mincount(hist, mincount, diagonal));
//extrapolate the curve start
if (mincount_cf.is_valid()){
// cerr << "valid" << endl;
double sample_size = static_cast<double>(sample);
while(sample_size <= max_extrapolation){
double t = (sample_size - vals_sum)/vals_sum;
assert(t >= 0.0);
mincount_vector.push_back(initial_observed + t*mincount_cf(t));
sample_size += step_size;
}
if(check_mincount_estimates_stability(mincount_vector, step_size)){
full_estimates.push_back(mincount_vector);
if (VERBOSE) cerr << '.';
}
else if(VERBOSE) cerr << '_';
}
else if(VERBOSE) cerr << '_';
}
if (VERBOSE)
cerr << endl;
if (full_estimates.size() < bootstraps)
throw SMITHLABException("too many iterations, poor sample");
}
static void
return_median_and_ci(const vector<vector<double> > &estimates,
const double alpha, const double initial_distinct,
const double vals_sum, const double step_size,
vector<double> &median_estimates,
vector<double> &lower_ci, vector<double> &upper_ci) {
// const double inv_norm_alpha = gsl_cdf_ugaussian_Qinv(alpha/2.0);
assert(!estimates.empty());
const size_t n_est = estimates.size();
vector<double> estimates_row(estimates.size(), 0.0);
for (size_t i = 0; i < estimates[0].size(); i++) {
// estimates is in wrong order, work locally on const val
for (size_t k = 0; k < n_est; ++k)
estimates_row[k] = estimates[k][i];
// sort to get confidence interval
sort(estimates_row.begin(), estimates_row.end());
const double curr_median =
gsl_stats_median_from_sorted_data(&estimates_row[0], 1, n_est);
median_estimates.push_back(curr_median);
// const double std_dev = sqrt(gsl_stats_variance(&estimates_row[0], 1, n_est));
upper_ci.push_back(gsl_stats_quantile_from_sorted_data(&estimates_row[0], 1, n_est, 0.95));
lower_ci.push_back(gsl_stats_quantile_from_sorted_data(&estimates_row[0], 1, n_est, 0.05));
}
}
static bool
mincount_single_estimate(const bool VERBOSE, vector<double> &hist,
size_t orig_max_terms, const int diagonal,
const double step_size,
const double max_extrapolation,
const size_t mincount,
vector<double> &mincount_estimate) {
//setup rng
srand(time(0) + getpid());
gsl_rng_env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
gsl_rng_set(rng, rand());
mincount_estimate.clear();
double vals_sum = 0.0;
for(size_t i = 0; i < hist.size(); i++)
vals_sum += i*hist[i];
const double initial_observed
= accumulate(hist.begin() + mincount, hist.end(), 0.0);
//construct umi vector to sample from
vector<size_t> umis;
size_t umi = 1;
for(size_t i = 1; i < hist.size(); i++){
for(size_t j = 0; j < hist[i]; j++){
for(size_t k = 0; k < i; k++)
umis.push_back(umi);
umi++;
}
}
assert(umis.size() == static_cast<size_t>(vals_sum));
// compute complexity curve by random sampling w/out replacement
size_t upper_limit = static_cast<size_t>(vals_sum);
size_t step = static_cast<size_t>(step_size);
size_t sample = step;
while(sample <= upper_limit){
mincount_estimate.push_back(sample_count_reads_w_mincount(rng, umis, sample, mincount));
sample += step;
}
// ENSURE THAT THE MAX TERMS ARE ACCEPTABLE
size_t counts_before_first_zero = 1;
while (counts_before_first_zero < hist.size() &&
hist[counts_before_first_zero] > 0)
++counts_before_first_zero;
size_t max_terms = std::min(orig_max_terms, counts_before_first_zero - mincount);
max_terms = max_terms - (max_terms % 2 == 0);
const ContinuedFractionApproximation
mincount_cfa(diagonal, max_terms);
const ContinuedFraction
mincount_cf(mincount_cfa.optimal_cont_frac_mincount(hist, mincount, diagonal));
//extrapolate the curve start
if (mincount_cf.is_valid()){
// cerr << "valid" << endl;
double sample_size = static_cast<double>(sample);
while(sample_size <= max_extrapolation){
double t = (sample_size - vals_sum)/vals_sum;
assert(t >= 0.0);
mincount_estimate.push_back(initial_observed + t*mincount_cf(t));
sample_size += step_size;
}
}
else{
// FAIL!
// lower_cf unacceptable, need to bootstrap to obtain estimates
return false;
}
if (VERBOSE) {
if(mincount_cf.offset_coeffs.size() > 0){
cerr << "CF_OFFSET_COEFF_ESTIMATES" << endl;
copy(mincount_cf.offset_coeffs.begin(), mincount_cf.offset_coeffs.end(),
std::ostream_iterator<double>(cerr, "\n"));
}
if(mincount_cf.cf_coeffs.size() > 0){
cerr << "CF_COEFF_ESTIMATES" << endl;
copy(mincount_cf.cf_coeffs.begin(), mincount_cf.cf_coeffs.end(),
std::ostream_iterator<double>(cerr, "\n"));
}
}
// SUCCESS!!
return true;
}
static void
write_predicted_curve(const string outfile, const double c_level,
const double step_size,
const vector<double> &median_mincount_estimates,
const vector<double> &mincount_lower_ci,
const vector<double> &mincount_upper_ci) {
std::ofstream of;
if (!outfile.empty()) of.open(outfile.c_str());
std::ostream out(outfile.empty() ? std::cout.rdbuf() : of.rdbuf());
out << "TOTAL_READS\tEXPECTED_DISTINCT\t"
<< "LOWER_" << 100*c_level << "%CI\t"
<< "UPPER_" << 100*c_level << "%CI" << endl;
out.setf(std::ios_base::fixed, std::ios_base::floatfield);
out.precision(1);
out << 0 << '\t' << 0 << '\t' << 0 << '\t' << 0 << endl;
for (size_t i = 0; i < median_mincount_estimates.size(); ++i)
out << (i + 1)*step_size << '\t'
<< median_mincount_estimates[i] << '\t'
<< mincount_lower_ci[i] << '\t' << mincount_upper_ci[i] << endl;
}
int
main(const int argc, const char **argv) {
try {
// const size_t MIN_REQUIRED_COUNTS = 8;
/* FILES */
string outfile;
size_t orig_max_terms = 200;
double max_extrapolation = 1.0e10;
double step_size = 1e6;
size_t bootstraps = 100;
int diagonal = 0;
double c_level = 0.95;
size_t mincount = 2;
/* FLAGS */
bool VERBOSE = false;
bool VALS_INPUT = false;
bool PAIRED_END = false;
bool HIST_INPUT = false;
bool SINGLE_ESTIMATE = false;
#ifdef HAVE_SAMTOOLS
bool BAM_FORMAT_INPUT = false;
size_t MAX_SEGMENT_LENGTH = 5000;
#endif
/**************** GET COMMAND LINE ARGUMENTS ***********************/
OptionParser opt_parse(strip_path(argv[0]),
"", "<sorted-bed-file>");
opt_parse.add_opt("output", 'o', "mincount output file (default: stdout)",
false , outfile);
opt_parse.add_opt("extrap",'e',"maximum extrapolation "
"(default: " + toa(max_extrapolation) + ")",
false, max_extrapolation);
opt_parse.add_opt("step",'s',"step size in extrapolations "
"(default: " + toa(step_size) + ")",
false, step_size);
opt_parse.add_opt("bootstraps",'b',"number of bootstraps "
"(default: " + toa(bootstraps) + "), ",
false, bootstraps);
opt_parse.add_opt("cval", 'c', "level for confidence intervals "
"(default: " + toa(c_level) + ")", false, c_level);
opt_parse.add_opt("mincount",'m',"minimum number of observations for a read to be counted "
"(default: " + toa(mincount) + "), ",
false, mincount);
// opt_parse.add_opt("terms",'t',"maximum number of terms", false,
// orig_max_terms);
opt_parse.add_opt("verbose", 'v', "print more information",
false, VERBOSE);
#ifdef HAVE_SAMTOOLS
opt_parse.add_opt("bam", 'B', "input is in BAM format",
false, BAM_FORMAT_INPUT);
opt_parse.add_opt("seg_len", 'l', "maximum segment length when merging "
"paired end bam reads (default: "
+ toa(MAX_SEGMENT_LENGTH) + ")",
false, MAX_SEGMENT_LENGTH);
#endif
opt_parse.add_opt("pe", 'P', "input is paired end read file",
false, PAIRED_END);
opt_parse.add_opt("vals", 'V',
"input is a text file containing only the observed counts",
false, VALS_INPUT);
opt_parse.add_opt("hist", 'H',
"input is a text file containing the observed histogram",
false, HIST_INPUT);
opt_parse.add_opt("quick",'Q',
"quick mode, estimate mincount without bootstrapping for confidence intervals",
false, SINGLE_ESTIMATE);
vector<string> leftover_args;
opt_parse.parse(argc, argv, leftover_args);
if (argc == 1 || opt_parse.help_requested()) {
cerr << opt_parse.help_message() << endl;
return EXIT_SUCCESS;
}
if (opt_parse.about_requested()) {
cerr << opt_parse.about_message() << endl;
return EXIT_SUCCESS;
}
if (opt_parse.option_missing()) {
cerr << opt_parse.option_missing_message() << endl;
return EXIT_SUCCESS;
}
if (leftover_args.empty()) {
cerr << opt_parse.help_message() << endl;
return EXIT_SUCCESS;
}
const string input_file_name = leftover_args.front();
/******************************************************************/
vector<double> counts_hist;
size_t n_reads = 0;
// LOAD VALUES
if(HIST_INPUT){
if(VERBOSE)
cerr << "HIST_INPUT" << endl;
n_reads = load_histogram(input_file_name, counts_hist);
}
else if(VALS_INPUT){
if(VERBOSE)
cerr << "VALS_INPUT" << endl;
n_reads = load_counts(input_file_name, counts_hist);
}
#ifdef HAVE_SAMTOOLS
else if (BAM_FORMAT_INPUT && PAIRED_END){
if(VERBOSE)
cerr << "PAIRED_END_BAM_INPUT" << endl;
const size_t MAX_READS_TO_HOLD = 5000000;
size_t n_paired = 0;
size_t n_mates = 0;
n_reads = load_counts_BAM_pe(VERBOSE, input_file_name,
MAX_SEGMENT_LENGTH,
MAX_READS_TO_HOLD, n_paired,
n_mates, counts_hist);
if(VERBOSE){
cerr << "MERGED PAIRED END READS = " << n_paired << endl;
cerr << "MATES PROCESSED = " << n_mates << endl;
}
}
else if(BAM_FORMAT_INPUT){
if(VERBOSE)
cerr << "BAM_INPUT" << endl;
n_reads = load_counts_BAM_se(input_file_name, counts_hist);
}
#endif
else if(PAIRED_END){
if(VERBOSE)
cerr << "PAIRED_END_BED_INPUT" << endl;
n_reads = load_counts_BED_pe(input_file_name, counts_hist);
}
else{ // default is single end bed file
if(VERBOSE)
cerr << "BED_INPUT" << endl;
n_reads = load_counts_BED_se(input_file_name, counts_hist);
}
const size_t max_observed_count = counts_hist.size() - 1;
// const double distinct_reads = accumulate(counts_hist.begin(),
// counts_hist.end(), 0.0);
// for large initial experiments need to adjust step size
// otherwise small relative steps do not account for variance
// in extrapolation
if(step_size < (n_reads/20)){
step_size = std::max(step_size,
step_size*round(n_reads/(20*step_size)));
if(VERBOSE)
cerr << "ADJUSTED_STEP_SIZE = " << step_size << endl;
}
// ENSURE THAT THE MAX TERMS ARE ACCEPTABLE
size_t counts_before_first_zero = 1;
while (counts_before_first_zero < counts_hist.size() &&
counts_hist[counts_before_first_zero] > 0)
++counts_before_first_zero;
orig_max_terms = std::min(orig_max_terms, counts_before_first_zero - 1);
orig_max_terms = orig_max_terms - (orig_max_terms % 2 == 1);
const double initial_observed
= accumulate(counts_hist.begin() + mincount, counts_hist.end(), 0.0);
double values_sum = 0.0;
for(size_t i = 0; i < counts_hist.size(); i++)
values_sum += i*counts_hist[i];
const size_t distinct_counts =
static_cast<size_t>(std::count_if(counts_hist.begin(), counts_hist.end(),
bind2nd(std::greater<double>(), 0.0)));
if (VERBOSE)
cerr << "TOTAL READS = " << n_reads << endl
<< "INITIAL MINCOUNT = " << initial_observed << endl
<< "DISTINCT COUNTS = " << distinct_counts << endl
<< "MAX COUNT = " << max_observed_count << endl
<< "COUNTS OF 1 = " << counts_hist[1] << endl
<< "MAX TERMS = " << orig_max_terms << endl;
if (VERBOSE) {
// OUTPUT THE ORIGINAL HISTOGRAM
cerr << "OBSERVED COUNTS (" << counts_hist.size() << ")" << endl;
for (size_t i = 0; i < counts_hist.size(); i++)
if (counts_hist[i] > 0)
cerr << i << '\t' << static_cast<size_t>(counts_hist[i]) << endl;
cerr << endl;
}
if(SINGLE_ESTIMATE){
vector<double> mincount_estimates;
bool SINGLE_ESTIMATE_SUCCESS =
mincount_single_estimate(VERBOSE, counts_hist,
orig_max_terms, diagonal,
step_size, max_extrapolation,
mincount,
mincount_estimates);
// IF FAILURE, EXIT
if(!SINGLE_ESTIMATE_SUCCESS)
throw SMITHLABException("SINGLE ESTIMATE FAILED, NEED TO RUN "
"FULL MODE FOR ESTIMATES");
std::ofstream of;
if (!outfile.empty()) of.open(outfile.c_str());
std::ostream out(outfile.empty() ? std::cout.rdbuf() : of.rdbuf());
out << "TOTAL_READS\tEXPECTED_DISTINCT" << endl;
out.setf(std::ios_base::fixed, std::ios_base::floatfield);
out.precision(1);
out << 0 << '\t' << 0 << endl;
for (size_t i = 0; i < mincount_estimates.size(); ++i)
out << (i + 1)*step_size << '\t'
<< mincount_estimates[i] << endl;
}
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
// BOOTSTRAPS
else{
if (VERBOSE)
cerr << "[BOOTSTRAP ESTIMATES]" << endl;
vector<vector <double> > mincount_estimates;
estimates_bootstrap(VERBOSE, counts_hist, bootstraps, orig_max_terms,
diagonal, step_size, max_extrapolation,
mincount, mincount_estimates);
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
// BOOTSTRAPS
if (VERBOSE)
cerr << "[COMPUTING CONFIDENCE INTERVALS]" << endl;
vector<double> median_mincount_estimates;
vector<double> mincount_upper_ci, mincount_lower_ci;
return_median_and_ci(mincount_estimates, 1.0 - c_level,
initial_observed, values_sum, step_size,
median_mincount_estimates,
mincount_lower_ci, mincount_upper_ci);
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
if (VERBOSE)
cerr << "[WRITING OUTPUT]" << endl;
write_predicted_curve(outfile, c_level, step_size,
median_mincount_estimates,
mincount_lower_ci, mincount_upper_ci);
}
}
catch (SMITHLABException &e) {
cerr << "ERROR:\t" << e.what() << endl;
return EXIT_FAILURE;
}
catch (std::bad_alloc &ba) {
cerr << "ERROR: could not allocate memory" << endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}