-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_quadrature.cpp
497 lines (413 loc) · 15.5 KB
/
test_quadrature.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/* test_quadrature:
*
* Copyright (C) 2014 University of Southern California and
* Andrew D. Smith and Timothy Daley
*
* Authors: Andrew D. Smith and Timothy Daley
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <fstream>
#include <numeric>
#include <vector>
#include <iomanip>
#include <queue>
#include <sys/types.h>
#include <unistd.h>
#include <cstring>
#include <tr1/unordered_map>
#include <cmath>
#include <fstream>
#include <iostream>
#include <sstream>
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_statistics_double.h>
#include <gsl/gsl_cdf.h>
#include <OptionParser.hpp>
#include <smithlab_utils.hpp>
#include <GenomicRegion.hpp>
#include <smithlab_os.hpp>
#include <RNG.hpp>
#include "moment_sequence.hpp"
#include "load_data_for_complexity.hpp"
using std::string;
using std::vector;
using std::endl;
using std::cerr;
using std::max;
using std::fixed;
using std::setprecision;
using std::min;
// vals_hist[j] = n_{j} = # (counts = j)
// vals_hist_distinct_counts[k] = kth index j s.t. vals_hist[j] > 0
// stores kth index of vals_hist that is positive
// distinct_counts_hist[k] = vals_hist[vals_hist_distinct_counts[k]]
// stores the kth positive value of vals_hist
void
resample_hist(const gsl_rng *rng, const vector<size_t> &vals_hist_distinct_counts,
const vector<double> &distinct_counts_hist,
vector<double> &out_hist) {
vector<unsigned int> sample_distinct_counts_hist(distinct_counts_hist.size(), 0);
const unsigned int distinct =
static_cast<unsigned int>(accumulate(distinct_counts_hist.begin(),
distinct_counts_hist.end(), 0.0));
gsl_ran_multinomial(rng, distinct_counts_hist.size(), distinct,
&distinct_counts_hist.front(),
&sample_distinct_counts_hist.front());
out_hist.clear();
out_hist.resize(vals_hist_distinct_counts.back() + 1, 0.0);
for(size_t i = 0; i < sample_distinct_counts_hist.size(); i++)
out_hist[vals_hist_distinct_counts[i]] =
static_cast<double>(sample_distinct_counts_hist[i]);
}
static inline double
alpha_log_confint_multiplier(const double estimate,
const double variance, const double alpha) {
const double inv_norm_alpha = gsl_cdf_ugaussian_Qinv(alpha/2.0);
return exp(inv_norm_alpha*
sqrt(log(1.0 + variance/pow(estimate, 2))));
}
static void
median_and_ci(const vector<double> &estimates,
const double c_level,
double &median_estimate,
double &lower_ci_estimate,
double &upper_ci_estimate){
assert(!estimates.empty());
const double alpha = 1.0 - c_level;
const size_t n_est = estimates.size();
vector<double> sorted_estimates(estimates);
sort(sorted_estimates.begin(), sorted_estimates.end());
median_estimate =
gsl_stats_median_from_sorted_data(&sorted_estimates[0],
1, n_est);
const double variance =
gsl_stats_variance(&sorted_estimates[0], 1, n_est);
const double confint_mltr =
alpha_log_confint_multiplier(median_estimate, variance, alpha);
lower_ci_estimate = median_estimate/confint_mltr;
upper_ci_estimate = median_estimate*confint_mltr;
}
void
log_mean(const bool VERBOSE,
const vector<double> &estimates,
const double c_level,
double &log_mean,
double &log_lower_ci,
double &log_upper_ci){
vector<double> log_estimates(estimates);
for(size_t i = 0; i < log_estimates.size(); i++)
log_estimates[i] = log(log_estimates[i]);
log_mean = exp(gsl_stats_mean(&log_estimates[0], 1,
log_estimates.size()) );
double log_std_dev = std::sqrt(gsl_stats_variance(&log_estimates[0], 1,
log_estimates.size()) );
const double inv_norm_alpha = gsl_cdf_ugaussian_Qinv((1.0 - c_level)/2.0);
log_lower_ci = exp(log(log_mean) - inv_norm_alpha*log_std_dev);
log_upper_ci = exp(log(log_mean) + inv_norm_alpha*log_std_dev);
}
int
main(const int argc, const char **argv) {
try {
bool VERBOSE = false;
bool PAIRED_END = false;
bool HIST_INPUT = false;
bool VALS_INPUT = false;
bool QUICK_MODE = false;
string outfile;
#ifdef HAVE_SAMTOOLS
bool BAM_FORMAT_INPUT = false;
size_t MAX_SEGMENT_LENGTH = 5000;
#endif
size_t max_num_points = 5;
double tolerance = 1e-20;
size_t max_iter = 100;
size_t bootstraps = 100;
double c_level = 0.95;
/********** GET COMMAND LINE ARGUMENTS FOR C_CURVE ***********/
OptionParser opt_parse(strip_path(argv[0]),
"", "<sorted-bed-file>");
opt_parse.add_opt("output", 'o', "yield output file (default: stdout)",
false , outfile);
opt_parse.add_opt("max_num_points",'p',"maximum number of points in quadrature "
"estimates (default: " + toa(max_num_points) + ")",
false, max_num_points);
opt_parse.add_opt("tolerance", 't', "numerical tolerance "
"(default: " + toa(tolerance) + ")",
false, tolerance);
opt_parse.add_opt("bootstraps", 'n', "number of bootstraps "
"(default: " + toa(bootstraps) + ")",
false, bootstraps);
opt_parse.add_opt("clevel", 'c', "level for confidence intervals "
"(default: " + toa(c_level) + ")", false, c_level);
opt_parse.add_opt("verbose", 'v', "print more information",
false, VERBOSE);
opt_parse.add_opt("pe", 'P', "input is paired end read file",
false, PAIRED_END);
opt_parse.add_opt("hist", 'H',
"input is a text file containing the observed histogram",
false, HIST_INPUT);
opt_parse.add_opt("vals", 'V',
"input is a text file containing only the observed counts",
false, VALS_INPUT);
#ifdef HAVE_SAMTOOLS
opt_parse.add_opt("bam", 'B', "input is in BAM format",
false, BAM_FORMAT_INPUT);
opt_parse.add_opt("seg_len", 'l', "maximum segment length when merging "
"paired end bam reads (default: "
+ toa(MAX_SEGMENT_LENGTH) + ")",
false, MAX_SEGMENT_LENGTH);
#endif
opt_parse.add_opt("quick", 'q', "quick mode, estimates without bootstrapping",
false, QUICK_MODE);
vector<string> leftover_args;
opt_parse.parse(argc, argv, leftover_args);
if (argc == 1 || opt_parse.help_requested()) {
cerr << opt_parse.help_message() << endl;
return EXIT_SUCCESS;
}
if (opt_parse.about_requested()) {
cerr << opt_parse.about_message() << endl;
return EXIT_SUCCESS;
}
if (opt_parse.option_missing()) {
cerr << opt_parse.option_missing_message() << endl;
return EXIT_SUCCESS;
}
if (leftover_args.empty()) {
cerr << opt_parse.help_message() << endl;
return EXIT_SUCCESS;
}
const string input_file_name = leftover_args.front();
// ****************************************************************
vector<double> counts_hist;
size_t n_obs = 0;
// LOAD VALUES
if(HIST_INPUT){
if(VERBOSE)
cerr << "HIST_INPUT" << endl;
n_obs = load_histogram(input_file_name, counts_hist);
}
else if(VALS_INPUT){
if(VERBOSE)
cerr << "VALS_INPUT" << endl;
n_obs = load_counts(input_file_name, counts_hist);
}
#ifdef HAVE_SAMTOOLS
else if (BAM_FORMAT_INPUT && PAIRED_END){
if(VERBOSE)
cerr << "PAIRED_END_BAM_INPUT" << endl;
const size_t MAX_READS_TO_HOLD = 5000000;
size_t n_paired = 0;
size_t n_mates = 0;
n_obs = load_counts_BAM_pe(VERBOSE, input_file_name,
MAX_SEGMENT_LENGTH,
MAX_READS_TO_HOLD, n_paired,
n_mates, counts_hist);
if(VERBOSE){
cerr << "MERGED PAIRED END READS = " << n_paired << endl;
cerr << "MATES PROCESSED = " << n_mates << endl;
}
}
else if(BAM_FORMAT_INPUT){
if(VERBOSE)
cerr << "BAM_INPUT" << endl;
n_obs = load_counts_BAM_se(input_file_name, counts_hist);
}
#endif
else if(PAIRED_END){
if(VERBOSE)
cerr << "PAIRED_END_BED_INPUT" << endl;
n_obs = load_counts_BED_pe(input_file_name, counts_hist);
}
else{ // default is single end bed file
if(VERBOSE)
cerr << "BED_INPUT" << endl;
n_obs = load_counts_BED_se(input_file_name, counts_hist);
}
const double distinct_obs = accumulate(counts_hist.begin(),
counts_hist.end(), 0.0);
vector<double> measure_moments;
// mu_r = (r + 1)! n_{r+1} / n_1
size_t indx = 1;
while(counts_hist[indx] > 0 && indx <= counts_hist.size()){
measure_moments.push_back(exp(gsl_sf_lnfact(indx)
+ log(counts_hist[indx])
- log(counts_hist[1])));
if(!std::isfinite(measure_moments.back())){
measure_moments.pop_back();
break;
}
indx++;
}
if (VERBOSE){
cerr << "TOTAL OBSERVATIONS = " << n_obs << endl
<< "DISTINCT OBSERVATIONS = " << distinct_obs << endl
<< "MAX COUNT = " << counts_hist.size() - 1 << endl;
// OUTPUT THE ORIGINAL HISTOGRAM
cerr << "OBSERVED COUNTS (" << counts_hist.size() << ")" << endl;
for (size_t i = 0; i < counts_hist.size(); i++)
if (counts_hist[i] > 0)
cerr << i << '\t' << setprecision(16) << counts_hist[i] << endl;
cerr << "OBSERVED MOMENTS" << endl;
for(size_t i = 0; i < min(measure_moments.size(),
2*max_num_points); i++)
cerr << std::setprecision(16) << measure_moments[i] << endl;
}
////////////////////////////////////////////////////////////////////
// calculate lower bound
if(QUICK_MODE){
if(measure_moments.size() < 2*max_num_points)
max_num_points = static_cast<size_t>(floor(measure_moments.size()/2));
else
measure_moments.resize(2*max_num_points);
size_t n_points = 0;
n_points = ensure_pos_def_mom_seq(measure_moments, tolerance, VERBOSE);
if(VERBOSE)
cerr << "n_points = " << n_points << endl;
MomentSequence obs_mom_seq(measure_moments);
if(VERBOSE){
cerr << "alpha = ";
for(size_t k = 0; k < obs_mom_seq.alpha.size(); k++)
cerr << obs_mom_seq.alpha[k] << ", ";
cerr << endl;
cerr << "beta = ";
for(size_t k = 0; k < obs_mom_seq.beta.size(); k++)
cerr << obs_mom_seq.beta[k] << ", ";
cerr << endl;
}
vector<double> points, weights;
obs_mom_seq.Lower_quadrature_rules(VERBOSE, n_points, tolerance,
max_iter, points, weights);
const double weights_sum = accumulate(weights.begin(), weights.end(), 0.0);
if(weights_sum != 1.0){
if(VERBOSE)
cerr << "weights sum = " << weights_sum << endl;
for(size_t i = 0; i < weights.size(); i++)
weights[i] = weights[i]/weights_sum;
}
if(VERBOSE){
cerr << "points = ";
for(size_t i = 0; i < points.size(); i++)
cerr << setprecision(16) << points[i] << ", ";
cerr << endl;
cerr << "weights = ";
for(size_t i = 0; i < weights.size(); i++)
cerr << setprecision(16) << weights[i] << ", ";
cerr << endl;
}
double estimated_unobs = 0.0;
for(size_t i = 0; i < weights.size(); i++)
estimated_unobs += counts_hist[1]*weights[i]/points[i];
if(estimated_unobs > 0.0)
estimated_unobs += distinct_obs;
else{
estimated_unobs = distinct_obs;
n_points = 0;
}
std::ofstream of;
if (!outfile.empty()) of.open(outfile.c_str());
std::ostream out(outfile.empty() ? std::cout.rdbuf() : of.rdbuf());
out.setf(std::ios_base::fixed, std::ios_base::floatfield);
out.precision(1);
out << "quadrature_estimated_unobs" << '\t' << "n_points" << endl;
out << estimated_unobs << '\t' << n_points << endl;
}
else{
vector<double> quad_estimates;
//setup rng
srand(time(0) + getpid());
gsl_rng_env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_default);
gsl_rng_set(rng, rand());
// hist may be sparse, to speed up bootstrapping
// sample only from positive entries
vector<size_t> counts_hist_distinct_counts;
vector<double> distinct_counts_hist;
for (size_t i = 0; i < counts_hist.size(); i++){
if (counts_hist[i] > 0) {
counts_hist_distinct_counts.push_back(i);
distinct_counts_hist.push_back(counts_hist[i]);
}
}
for(size_t iter = 0;
iter < max_iter && quad_estimates.size() < bootstraps;
++iter){
vector<double> sample_hist;
resample_hist(rng, counts_hist_distinct_counts,
distinct_counts_hist, sample_hist);
const double sampled_distinct = accumulate(sample_hist.begin(), sample_hist.end(), 0.0);
// initialize moments, 0th moment is 1
vector<double> bootstrap_moments(1, 1.0);
// moments[r] = (r + 1)! n_{r+1} / n_1
for(size_t i = 0; i < 2*max_num_points + 1; i++)
bootstrap_moments.push_back(exp(gsl_sf_lnfact(i + 2)
+ log(sample_hist[i + 2])
- log(sample_hist[1])) );
size_t n_points = 0;
n_points = ensure_pos_def_mom_seq(bootstrap_moments, tolerance, VERBOSE);
MomentSequence bootstrap_mom_seq(bootstrap_moments);
vector<double> points, weights;
bootstrap_mom_seq.Lower_quadrature_rules(VERBOSE, n_points, tolerance,
max_iter, points, weights);
const double weights_sum = accumulate(weights.begin(), weights.end(), 0.0);
if(weights_sum != 1.0){
for(size_t i = 0; i < weights.size(); i++)
weights[i] = weights[i]/weights_sum;
}
double estimated_unobs = 0.0;
for(size_t i = 0; i < weights.size(); i++)
estimated_unobs += counts_hist[1]*weights[i]/points[i];
if(estimated_unobs > 0.0)
estimated_unobs += sampled_distinct;
else{
estimated_unobs = sampled_distinct;
n_points = 0;
}
quad_estimates.push_back(estimated_unobs);
}
double median_estimate, log_mean_estimate, lower_log_ci, upper_log_ci;
log_mean(VERBOSE, quad_estimates, c_level, log_mean_estimate,
lower_log_ci, upper_log_ci);
median_and_ci(quad_estimates, c_level, median_estimate,
lower_log_ci, upper_log_ci);
std::ofstream of;
if (!outfile.empty()) of.open(outfile.c_str());
std::ostream out(outfile.empty() ? std::cout.rdbuf() : of.rdbuf());
out.setf(std::ios_base::fixed, std::ios_base::floatfield);
out.precision(1);
out << "median_estimated_unobs" << '\t'
<< "log_mean_estimated_unobs" << '\t'
<< "log_lower_ci" << '\t'
<< "log_upper_ci" << endl;
out << median_estimate << '\t'
<< log_mean_estimate << '\t'
<< lower_log_ci << '\t'
<< upper_log_ci << endl;
}
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
// done trying
}
catch (SMITHLABException &e) {
cerr << "ERROR:\t" << e.what() << endl;
return EXIT_FAILURE;
}
catch (std::bad_alloc &ba) {
cerr << "ERROR: could not allocate memory" << endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}