From 6ccb4b79aa1e290ade15c4e1b876302250471623 Mon Sep 17 00:00:00 2001 From: tkoz0 <13438573+tkoz0@users.noreply.github.com> Date: Sat, 14 Dec 2024 01:00:57 -0500 Subject: [PATCH] roots --- academic/misc/2024-math-calendar/12-dec.html | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/academic/misc/2024-math-calendar/12-dec.html b/academic/misc/2024-math-calendar/12-dec.html index 79ad3f8..1ce9b4c 100644 --- a/academic/misc/2024-math-calendar/12-dec.html +++ b/academic/misc/2024-math-calendar/12-dec.html @@ -494,6 +494,21 @@

4. Combining results

Dec 13

+\[\sqrt{x+\sqrt{16x-64}}+\sqrt{x-\sqrt{16x-64}}=6\] +\[\left(x+\sqrt{16x-64}\right)+\left(x-\sqrt{16x-64}\right) ++2\sqrt{\left(x+\sqrt{16x-64}\right)\left(x-\sqrt{16x-64}\right)}=36\] +\[2x+2\sqrt{x^2-(16x-64)}=36\] +\[x+\sqrt{x^2-16x+64}=18\] +\[x+\sqrt{(x-8)^2}=18\] +\[x+|x-8|=18\] + +

+If \(x-8<0\) then the equation because \(x-(x-8)=18\Rightarrow8=18\) so no +solution. If \(x-8\geq0\) then we find the solution +\[x+(x-8)=18\Rightarrow2x-8=18\Rightarrow2x=26\Rightarrow x=13\] +This can be checked to ensure it is not an extraneous solution. +

+

Dec 14

Dec 15