forked from mrcodetastic/ESP32-HUB75-MatrixPanel-DMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Boid.h
326 lines (291 loc) · 10.2 KB
/
Boid.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
* Aurora: https://github.com/pixelmatix/aurora
* Copyright (c) 2014 Jason Coon
*
* Portions of this code are adapted from "Flocking" in "The Nature of Code" by Daniel Shiffman: http://natureofcode.com/
* Copyright (c) 2014 Daniel Shiffman
* http://www.shiffman.net
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// Flocking
// Daniel Shiffman <http://www.shiffman.net>
// The Nature of Code, Spring 2009
// Boid class
// Methods for Separation, Cohesion, Alignment added
class Boid {
public:
PVector location;
PVector velocity;
PVector acceleration;
float maxforce; // Maximum steering force
float maxspeed; // Maximum speed
float desiredseparation = 4;
float neighbordist = 8;
byte colorIndex = 0;
float mass;
boolean enabled = true;
Boid() {}
Boid(float x, float y) {
acceleration = PVector(0, 0);
velocity = PVector(randomf(), randomf());
location = PVector(x, y);
maxspeed = 1.5;
maxforce = 0.05;
}
static float randomf() {
return mapfloat(random(0, 255), 0, 255, -.5, .5);
}
static float mapfloat(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
void run(Boid boids [], uint8_t boidCount) {
flock(boids, boidCount);
update();
// wrapAroundBorders();
// render();
}
// Method to update location
void update() {
// Update velocity
velocity += acceleration;
// Limit speed
velocity.limit(maxspeed);
location += velocity;
// Reset acceleration to 0 each cycle
acceleration *= 0;
}
void applyForce(PVector force) {
// We could add mass here if we want A = F / M
acceleration += force;
}
void repelForce(PVector obstacle, float radius) {
//Force that drives boid away from obstacle.
PVector futPos = location + velocity; //Calculate future position for more effective behavior.
PVector dist = obstacle - futPos;
float d = dist.mag();
if (d <= radius) {
PVector repelVec = location - obstacle;
repelVec.normalize();
if (d != 0) { //Don't divide by zero.
// float scale = 1.0 / d; //The closer to the obstacle, the stronger the force.
repelVec.normalize();
repelVec *= (maxforce * 7);
if (repelVec.mag() < 0) { //Don't let the boids turn around to avoid the obstacle.
repelVec.y = 0;
}
}
applyForce(repelVec);
}
}
// We accumulate a new acceleration each time based on three rules
void flock(Boid boids [], uint8_t boidCount) {
PVector sep = separate(boids, boidCount); // Separation
PVector ali = align(boids, boidCount); // Alignment
PVector coh = cohesion(boids, boidCount); // Cohesion
// Arbitrarily weight these forces
sep *= 1.5;
ali *= 1.0;
coh *= 1.0;
// Add the force vectors to acceleration
applyForce(sep);
applyForce(ali);
applyForce(coh);
}
// Separation
// Method checks for nearby boids and steers away
PVector separate(Boid boids [], uint8_t boidCount) {
PVector steer = PVector(0, 0);
int count = 0;
// For every boid in the system, check if it's too close
for (int i = 0; i < boidCount; i++) {
Boid other = boids[i];
if (!other.enabled)
continue;
float d = location.dist(other.location);
// If the distance is greater than 0 and less than an arbitrary amount (0 when you are yourself)
if ((d > 0) && (d < desiredseparation)) {
// Calculate vector pointing away from neighbor
PVector diff = location - other.location;
diff.normalize();
diff /= d; // Weight by distance
steer += diff;
count++; // Keep track of how many
}
}
// Average -- divide by how many
if (count > 0) {
steer /= (float) count;
}
// As long as the vector is greater than 0
if (steer.mag() > 0) {
// Implement Reynolds: Steering = Desired - Velocity
steer.normalize();
steer *= maxspeed;
steer -= velocity;
steer.limit(maxforce);
}
return steer;
}
// Alignment
// For every nearby boid in the system, calculate the average velocity
PVector align(Boid boids [], uint8_t boidCount) {
PVector sum = PVector(0, 0);
int count = 0;
for (int i = 0; i < boidCount; i++) {
Boid other = boids[i];
if (!other.enabled)
continue;
float d = location.dist(other.location);
if ((d > 0) && (d < neighbordist)) {
sum += other.velocity;
count++;
}
}
if (count > 0) {
sum /= (float) count;
sum.normalize();
sum *= maxspeed;
PVector steer = sum - velocity;
steer.limit(maxforce);
return steer;
}
else {
return PVector(0, 0);
}
}
// Cohesion
// For the average location (i.e. center) of all nearby boids, calculate steering vector towards that location
PVector cohesion(Boid boids [], uint8_t boidCount) {
PVector sum = PVector(0, 0); // Start with empty vector to accumulate all locations
int count = 0;
for (int i = 0; i < boidCount; i++) {
Boid other = boids[i];
if (!other.enabled)
continue;
float d = location.dist(other.location);
if ((d > 0) && (d < neighbordist)) {
sum += other.location; // Add location
count++;
}
}
if (count > 0) {
sum /= count;
return seek(sum); // Steer towards the location
}
else {
return PVector(0, 0);
}
}
// A method that calculates and applies a steering force towards a target
// STEER = DESIRED MINUS VELOCITY
PVector seek(PVector target) {
PVector desired = target - location; // A vector pointing from the location to the target
// Normalize desired and scale to maximum speed
desired.normalize();
desired *= maxspeed;
// Steering = Desired minus Velocity
PVector steer = desired - velocity;
steer.limit(maxforce); // Limit to maximum steering force
return steer;
}
// A method that calculates a steering force towards a target
// STEER = DESIRED MINUS VELOCITY
void arrive(PVector target) {
PVector desired = target - location; // A vector pointing from the location to the target
float d = desired.mag();
// Normalize desired and scale with arbitrary damping within 100 pixels
desired.normalize();
if (d < 4) {
float m = map(d, 0, 100, 0, maxspeed);
desired *= m;
}
else {
desired *= maxspeed;
}
// Steering = Desired minus Velocity
PVector steer = desired - velocity;
steer.limit(maxforce); // Limit to maximum steering force
applyForce(steer);
//Serial.println(d);
}
void wrapAroundBorders() {
if (location.x < 0) location.x = MATRIX_WIDTH - 1;
if (location.y < 0) location.y = MATRIX_HEIGHT - 1;
if (location.x >= MATRIX_WIDTH) location.x = 0;
if (location.y >= MATRIX_HEIGHT) location.y = 0;
}
void avoidBorders() {
PVector desired = velocity;
if (location.x < 8) desired = PVector(maxspeed, velocity.y);
if (location.x >= MATRIX_WIDTH - 8) desired = PVector(-maxspeed, velocity.y);
if (location.y < 8) desired = PVector(velocity.x, maxspeed);
if (location.y >= MATRIX_HEIGHT - 8) desired = PVector(velocity.x, -maxspeed);
if (desired != velocity) {
PVector steer = desired - velocity;
steer.limit(maxforce);
applyForce(steer);
}
if (location.x < 0) location.x = 0;
if (location.y < 0) location.y = 0;
if (location.x >= MATRIX_WIDTH) location.x = MATRIX_WIDTH - 1;
if (location.y >= MATRIX_HEIGHT) location.y = MATRIX_HEIGHT - 1;
}
bool bounceOffBorders(float bounce) {
bool bounced = false;
if (location.x >= MATRIX_WIDTH) {
location.x = MATRIX_WIDTH - 1;
velocity.x *= -bounce;
bounced = true;
}
else if (location.x < 0) {
location.x = 0;
velocity.x *= -bounce;
bounced = true;
}
if (location.y >= MATRIX_HEIGHT) {
location.y = MATRIX_HEIGHT - 1;
velocity.y *= -bounce;
bounced = true;
}
else if (location.y < 0) {
location.y = 0;
velocity.y *= -bounce;
bounced = true;
}
return bounced;
}
void render() {
//// Draw a triangle rotated in the direction of velocity
//float theta = velocity.heading2D() + radians(90);
//fill(175);
//stroke(0);
//pushMatrix();
//translate(location.x,location.y);
//rotate(theta);
//beginShape(TRIANGLES);
//vertex(0, -r*2);
//vertex(-r, r*2);
//vertex(r, r*2);
//endShape();
//popMatrix();
//dma_display->drawBackgroundPixelRGB888(location.x, location.y, CRGB::Blue);
}
};
static const uint8_t AVAILABLE_BOID_COUNT = 40;
Boid boids[AVAILABLE_BOID_COUNT];