forked from Jun-WFI-hyung/team1_UNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
130 lines (106 loc) · 4.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python3
from net.Unet import Unet
from net.UnetData import UnetData
from utils.save_load import *
from utils.IOU import *
from utils.read_arg import *
import json, time
import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from torchvision import transforms as transforms
def train(args, cfg):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Available Device = {device}")
cudnn.enabled = True
# load argument -----------------------------------------------------
file_name_ = args.pth
epoch_ = cfg["epoch"]
pth_path_ = cfg["pth_path"]
data_path_ = cfg["data_path"]
infer_path_ = cfg["infer_path"]
prefix_name = cfg["prefix_name"]
shuffle_ = cfg["shuffle"]
data_rate_ = cfg["data_rate"]
lr_ = cfg["learning_rate"]
batch_size_ = cfg["batch_size"]
num_workers_ = cfg["num_workers"]
depth_ = cfg["depth"]
img_channel_ = cfg["img_channel"]
target_channel_ = cfg["target_channel"]
# dataset load ------------------------------------------------------
print(f"Data init " + "="*60)
train_data = UnetData(data_path_, mode='T', depth_=depth_, target_ch=target_channel_)
eval_data = UnetData(data_path_, mode='V', depth_=depth_, target_ch=target_channel_)
train_loader = DataLoader(train_data, batch_size=batch_size_, shuffle=shuffle_, num_workers=num_workers_)
eval_loader = DataLoader(eval_data, batch_size=batch_size_, shuffle=shuffle_, num_workers=num_workers_)
class_num = len(train_data.class_keys) if target_channel_ is None else 1
print(f"Data init complete " + "="*51)
# create network ----------------------------------------------------
model = Unet(class_num_=class_num, depth_=depth_, image_ch_=img_channel_, target_ch_=target_channel_).to(device)
loss_func = DiceLoss_BIN(class_num, device).to(device)
optim = torch.optim.Adam(model.parameters(), lr=lr_)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optim,
lr_lambda=lambda e: 0.95 ** e)
train_cnt_max = int(len(train_data) * data_rate_)
eval_cnt_max = int(len(eval_data) * 0.05)
# train_cnt_max = 1
# eval_cnt_max = 5
# initialize model --------------------------------------------------
start_epoch = 0
if args.load.upper() == 'T' and args.pth is not None:
print("Load pth file")
model, optim, start_epoch = load_net(pth_path_, file_name_, prefix_name, model, optim)
elif args.load.upper() == 'T':
raise Exception("Put in pth filename")
# start cycle -------------------------------------------------------
for e in range(start_epoch+1, start_epoch + epoch_ + 2):
e_start = time.time()
model.train()
loss_arr = []
log = []
for idx, i in enumerate(train_loader):
start = time.time()
train_input = i[0].to(device)
train_label = i[1].to(device)
optim.zero_grad()
train_output = model(train_input)
train_loss, IOU = loss_func(train_output, train_label)
train_loss.backward()
optim.step()
loss_arr += [train_loss.item()]
end = time.time()
t = f"epoch : {e} / train : {idx} / loss mean : {np.mean(loss_arr):.5f} / IOU : {IOU.item()*100:.5f} % / {end-start:.5f} sec"
log.append(t)
print(t)
if idx >= train_cnt_max: break
train_loss = np.mean(loss_arr)
print("")
with torch.no_grad():
model.eval()
eval_loss_arr = []
for idx, i in enumerate(eval_loader):
start = time.time()
eval_input = i[0].to(device)
eval_label = i[1].to(device)
eval_output = model(eval_input)
eval_loss, IOU = loss_func(eval_output, eval_label)
eval_loss_arr += [eval_loss.item()]
end = time.time()
t = f"epoch : {e} / eval : {idx} / loss mean : {np.mean(loss_arr):.5f} / IOU : {IOU.item()*100:.5f} % / {end-start:.5f} sec"
log.append(t)
print(t)
if idx >= eval_cnt_max: break
eval_loss = np.mean(eval_loss_arr)
scheduler.step()
print("")
e_end = time.time()
print(f" - epoch elapsed time : {e_end-e_start:.5f} sec")
print(f" - learning rate : {optim.param_groups[0]['lr']}")
save_net(pth_path_, model, optim, e, train_loss, eval_loss, e_end-e_start, log)
if __name__ == "__main__":
args = read_train_arg()
with open("./Unet_config.json") as f:
cfg = json.load(f)
train(args=args, cfg=cfg)