We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我把loss_4s和iou loss层都注释掉了,现在仅有文字识别的softmaxwithloss损失函数(mask loss和iou loss都不参与训练); 然后自己写了一个输入数据层,可以输出包含文字的图片(640640大小), 作为gt的bbox的四个点的坐标以及文字的标签同时输出; 但是训练时候遇到segmentation fault, 提示内存越界; 请问输入给point bilinear layer的bbox大小有什么限制吗?648个采样点的条件下, 输入的bbox大小是否有什么要求?
The text was updated successfully, but these errors were encountered:
@tonghe90 我看了一下代码,发现在point_bilinear_layer.cpp中,如果每次输入的roi的个数(point_num_=bottom[1]->num())为变化的数目,这时会因为reshape时 top[0]->reshape(*)分配的内存是固定的,可能导致内存越界; 因此,我突然想到自己之前输入的roi可能是错的,输入的roi个数应该是固定的,比如100个(可能比图片实际拥有的roi个数多,也可能少),而输入的sample_id作用就是指出来输入的ROI中那些是真正存在的ROI,而那些不是真的存在的roi可能被填充0或-1,只是起到对齐内存的作用,从而避免内存访问越界;不知我的上述理解是否正确?
Sorry, something went wrong.
No branches or pull requests
我把loss_4s和iou loss层都注释掉了,现在仅有文字识别的softmaxwithloss损失函数(mask loss和iou loss都不参与训练); 然后自己写了一个输入数据层,可以输出包含文字的图片(640640大小), 作为gt的bbox的四个点的坐标以及文字的标签同时输出; 但是训练时候遇到segmentation fault, 提示内存越界; 请问输入给point bilinear layer的bbox大小有什么限制吗?648个采样点的条件下, 输入的bbox大小是否有什么要求?
The text was updated successfully, but these errors were encountered: