Skip to content

Latest commit

 

History

History
executable file
·
280 lines (222 loc) · 13.8 KB

README.md

File metadata and controls

executable file
·
280 lines (222 loc) · 13.8 KB

README

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

Setup

Requirements

conda create --name acl python=3.8
conda activate acl
pip install -r requirements.txt

Datasets

The datasets used in our experiments:

Data format:

 {
       "tokens": ["2004-12-20T15:37:00", "Microscopic", "microcap", "Everlast", ",", "mainly", "a", "maker", "of", "boxing", "equipment", ",", "has", "soared", "over", "the", "last", "several", "days", "thanks", "to", "a", "licensing", "deal", "with", "Jacques", "Moret", "allowing", "Moret", "to", "buy", "out", "their", "women", "'s", "apparel", "license", "for", "$", "30", "million", ",", "on", "top", "of", "a", "$", "12.5", "million", "payment", "now", "."], 
       "pos": ["JJ", "JJ", "NN", "NNP", ",", "RB", "DT", "NN", "IN", "NN", "NN", ",", "VBZ", "VBN", "IN", "DT", "JJ", "JJ", "NNS", "NNS", "TO", "DT", "NN", "NN", "IN", "NNP", "NNP", "VBG", "NNP", "TO", "VB", "RP", "PRP$", "NNS", "POS", "NN", "NN", "IN", "$", "CD", "CD", ",", "IN", "NN", "IN", "DT", "$", "CD", "CD", "NN", "RB", "."], 
       "entities": [{"type": "ORG", "start": 1, "end": 4}, {"type": "ORG", "start": 5, "end": 11}, {"type": "ORG", "start": 25, "end": 27}, {"type": "ORG", "start": 28, "end": 29}, {"type": "ORG", "start": 32, "end": 33}, {"type": "PER", "start": 33, "end": 34}], 
       "ltokens": ["Everlast", "'s", "Rally", "Just", "Might", "Live", "up", "to", "the", "Name", "."], 
       "rtokens": ["In", "other", "words", ",", "a", "competitor", "has", "decided", "that", "one", "segment", "of", "the", "company", "'s", "business", "is", "potentially", "worth", "$", "42.5", "million", "."],
       "org_id": "MARKETVIEW_20041220.1537"
}

The ltokens contains the tokens from the previous sentence. And The rtokens contains the tokens from the next sentence.

Due to the license of LDC, we cannot directly release our preprocessed datasets of ACE04, ACE05 and KBP17. We only release the preprocessed GENIA dataset and the corresponding word vectors and dictionary. Download them from here.

If you need other datasets, please contact me ([email protected]) by email. Note that you need to state your identity and prove that you have obtained the LDC license.

Pretrained Wordvecs

The word vectors used in our experiments:

Download and extract the wordvecs from above links, save GloVe in ../glove and BioWord2Vec in ../biovec.

mkdir ../glove
mkdir ../biovec
mv glove.6B.100d.txt ../glove
mv PubMed-shuffle-win-30.txt ../biovec

Note: the BioWord2Vec needs to be converted from binary format to text format. The code is as follows:

from gensim.models.keyedvectors import KeyedVectors
model = KeyedVectors.load_word2vec_format('PubMed-shuffle-win-30.bin', binary=True)
model.save_word2vec_format('./PubMed-shuffle-win-30.txt', binary=False)

Example

Train

python identifier.py train --config configs/example.conf

Note: You should edit this line in config_reader.py according to the actual number of GPUs.

Evaluation

You can download our checkpoints, or train your own model and then evaluate the model.

cd data/
# download checkpoints from https://drive.google.com/drive/folders/1NaoL42N-g1t9jiif427HZ6B8MjbyGTaZ?usp=sharing
unzip checkpoints.zip
cd ../
python identifier.py eval --config configs/eval.conf

If you use the checkpoints we provided, you will get the following results:

  • ACE05:
-- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 WEA        84.62        88.00        86.27           50
                 ORG        83.23        78.78        80.94          523
                 PER        88.02        92.05        89.99         1724
                 FAC        80.65        73.53        76.92          136
                 GPE        85.13        87.65        86.37          405
                 VEH        86.36        75.25        80.42          101
                 LOC        66.04        66.04        66.04           53

               micro        86.05        87.20        86.62         2992
               macro        82.01        80.19        81.00         2992
  • GENIA:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 RNA        89.91        89.91        89.91          109
                 DNA        76.79        79.16        77.96         1262
           cell_line        82.35        72.36        77.03          445
             protein        81.11        85.18        83.09         3084
           cell_type        72.90        75.91        74.37          606

               micro        79.46        81.84        80.63         5506
               macro        80.61        80.50        80.47         5506
  • ACE04:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 FAC        72.16        62.50        66.99          112
                 PER        91.62        91.26        91.44         1498
                 LOC        74.36        82.86        78.38          105
                 VEH        94.44       100.00        97.14           17
                 GPE        89.45        86.09        87.74          719
                 WEA        79.17        59.38        67.86           32
                 ORG        83.49        82.43        82.95          552

               micro        88.24        86.79        87.51         3035
               macro        83.53        80.64        81.78         3035
  • KBP17:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 LOC        66.75        64.41        65.56          399
                 FAC        72.62        64.06        68.08          679
                 PER        87.86        88.30        88.08         7083
                 ORG        80.06        72.29        75.98         2461
                 GPE        89.58        87.36        88.46         1978

               micro        85.31        82.96        84.12        12600
               macro        79.38        75.28        77.23        12600

Quick Start

The preprocessed GENIA dataset is available, so we use it as an example to demonstrate the training and evaluation of the model.

cd identifier

mkdir -p data/datasets
cd data/datasets
# download genia.zip (the preprocessed GENIA dataset, wordvec and vocabulary) from https://drive.google.com/file/d/13Lf_pQ1-QNI94EHlvtcFhUcQeQeUDq8l/view?usp=sharing.
unzip genia.zip
python identifier.py train --config configs/example.conf

output:

--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
             protein        81.19        85.08        83.09         3084
                 RNA        90.74        89.91        90.32          109
           cell_line        82.35        72.36        77.03          445
                 DNA        76.83        79.08        77.94         1262
           cell_type        72.90        75.91        74.37          606

               micro        79.53        81.77        80.63         5506
               macro        80.80        80.47        80.55         5506

Best F1 score: 80.63560463237275, achieved at Epoch: 34
2021-01-02 15:07:39,565 [MainThread  ] [INFO ]  Logged in: data/genia/main/genia_train/2021-01-02_05:32:27.317850
2021-01-02 15:07:39,565 [MainThread  ] [INFO ]  Saved in: data/genia/main/genia_train/2021-01-02_05:32:27.317850
vim configs/eval.conf
# change model_path to the path of the trained model.
# eg: model_path = data/genia/main/genia_train/2021-01-02_05:32:27.317850/final_model
python identifier.py eval --config configs/eval.conf

output:

--------------------------------------------------
Config:
data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model
Namespace(bert_before_lstm=True, cache_path=None, char_lstm_drop=0.2, char_lstm_layers=1, char_size=50, config='configs/eval.conf', cpu=False, dataset_path='data/datasets/genia/genia_test_context.json', debug=False, device_id='0', eval_batch_size=4, example_count=None, freeze_transformer=False, label='2021-01-02_eval', log_path='data/genia/main/', lowercase=False, lstm_drop=0.2, lstm_layers=1, model_path='data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model', model_type='identifier', neg_entity_count=5, nms=0.65, no_filter='sigmoid', no_overlapping=False, no_regressor=False, no_times_count=False, norm='sigmoid', pool_type='max', pos_size=25, prop_drop=0.5, reduce_dim=True, sampling_processes=4, seed=47, size_embedding=25, spn_filter=5, store_examples=True, store_predictions=True, tokenizer_path='data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model', types_path='data/datasets/genia/genia_types.json', use_char_lstm=True, use_entity_ctx=True, use_glove=True, use_pos=True, use_size_embedding=False, weight_decay=0.01, window_size=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], wordvec_path='../biovec/PubMed-shuffle-win-30.txt')
Repeat 1 times
--------------------------------------------------
Iteration 0
--------------------------------------------------
Avaliable devices:  [3]
Using Random Seed 47
2021-05-22 17:52:44,101 [MainThread  ] [INFO ]  Dataset: data/datasets/genia/genia_test_context.json
2021-05-22 17:52:44,101 [MainThread  ] [INFO ]  Model: identifier
Reused vocab!
Parse dataset 'test': 100%|███████████████████████████████████████| 1854/1854 [00:09<00:00, 202.86it/s]
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Relation type count: 1
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Entity type count: 6
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Entities:
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  No Entity=0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  DNA=1
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  RNA=2
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  cell_type=3
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  protein=4
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  cell_line=5
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Relations:
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  No Relation=0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Dataset: test
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Document count: 1854
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Relation count: 0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Entity count: 5506
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Context size: 242
2021-05-22 17:53:10,348 [MainThread  ] [INFO ]  Evaluate: test
Evaluate epoch 0: 100%|██████████████████████████████████████████| 464/464 [01:14<00:00,  6.26it/s]
Enmuberated Spans: 0
Evaluation

--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
           cell_line        82.60        71.46        76.63          445
                 DNA        77.67        78.29        77.98         1262
                 RNA        92.45        89.91        91.16          109
           cell_type        73.79        75.25        74.51          606
             protein        81.99        84.57        83.26         3084

               micro        80.33        81.15        80.74         5506
               macro        81.70        79.89        80.71         5506
2021-05-22 17:54:28,943 [MainThread  ] [INFO ]  Logged in: data/genia/main/genia_eval/2021-05-22_17:52:43.991876

Citation

If you have any questions related to the code or the paper, feel free to email [email protected].

@inproceedings{shen-etal-2021-locate,
    title = "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition",
    author = "Shen, Yongliang  and
      Ma, Xinyin  and
      Tan, Zeqi  and
      Zhang, Shuai  and
      Wang, Wen  and
      Lu, Weiming",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.216",
    doi = "10.18653/v1/2021.acl-long.216",
    pages = "2782--2794",
}