diff --git a/examples/p4est_2d_dgsem/elixir_advection_meshview.jl b/examples/p4est_2d_dgsem/elixir_advection_meshview.jl new file mode 100644 index 0000000000..9435930b53 --- /dev/null +++ b/examples/p4est_2d_dgsem/elixir_advection_meshview.jl @@ -0,0 +1,65 @@ +using OrdinaryDiffEq +using Trixi + +############################################################################### +# Most basic p4est mesh view setup where the entire domain +# is part of the single mesh view. + +advection_velocity = (0.2, -0.7) +equations = LinearScalarAdvectionEquation2D(advection_velocity) + +# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux +solver = DGSEM(polydeg = 3, surface_flux = flux_lax_friedrichs) + +coordinates_min = (-1.0, -1.0) # minimum coordinates (min(x), min(y)) +coordinates_max = (1.0, 1.0) # maximum coordinates (max(x), max(y)) + +trees_per_dimension = (8, 8) + +# Create parent P4estMesh with 8 x 8 trees and 8 x 8 elements +parent_mesh = P4estMesh(trees_per_dimension, polydeg = 3, + coordinates_min = coordinates_min, + coordinates_max = coordinates_max, + initial_refinement_level = 0) + +# Define the mesh view covering the whole parent mesh. +cell_ids = Vector(1:prod(trees_per_dimension)) +mesh = P4estMeshView(parent_mesh, cell_ids) + +# A semidiscretization collects data structures and functions for the spatial discretization +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition_convergence_test, + solver) + +############################################################################### +# ODE solvers, callbacks etc. + +# Create ODE problem with time span from 0.0 to 1.0 +ode = semidiscretize(semi, (0.0, 1.0)) + +# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup +# and resets the timers +summary_callback = SummaryCallback() + +# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results +analysis_callback = AnalysisCallback(semi, interval = 100) + +# The SaveSolutionCallback allows to save the solution to a file in regular intervals +save_solution = SaveSolutionCallback(interval = 100, + solution_variables = cons2prim) + +# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step +stepsize_callback = StepsizeCallback(cfl = 1.6) + +# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver +callbacks = CallbackSet(summary_callback, save_solution, stepsize_callback) + +############################################################################### +# run the simulation + +# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks +sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback + save_everystep = false, callback = callbacks); + +# Print the timer summary +summary_callback()