-
Notifications
You must be signed in to change notification settings - Fork 34
/
BPSW_primality_test_mpz.pl
executable file
·148 lines (111 loc) · 4.18 KB
/
BPSW_primality_test_mpz.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/perl
# The Baillie-PSW primality test, named after Robert Baillie, Carl Pomerance, John Selfridge, and Samuel Wagstaff.
# No counter-examples are known to this test.
# Algorithm: given an odd integer n, that is not a perfect power:
# 1. Perform a (strong) base-2 Fermat test.
# 2. Find the first D in the sequence 5, −7, 9, −11, 13, −15, ... for which the Jacobi symbol (D/n) is −1.
# Set P = 1 and Q = (1 − D) / 4.
# 3. Perform a strong Lucas probable prime test on n using parameters D, P, and Q.
# See also:
# https://en.wikipedia.org/wiki/Lucas_pseudoprime
# https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test
use 5.020;
use warnings;
use experimental qw(signatures);
use Math::GMPz;
sub findQ ($n) {
for (my $k = 2 ; ; ++$k) {
my $D = (-1)**$k * (2 * $k + 1);
if (Math::GMPz::Rmpz_si_kronecker($D, $n) == -1) {
return ((1 - $D) / 4);
}
}
}
sub BPSW_primality_test ($n) {
$n = Math::GMPz::Rmpz_init_set_str($n, 10) if ref($n) ne 'Math::GMPz';
return 0 if Math::GMPz::Rmpz_cmp_ui($n, 1) <= 0;
return 1 if Math::GMPz::Rmpz_cmp_ui($n, 2) == 0;
return 0 if Math::GMPz::Rmpz_even_p($n);
return 0 if Math::GMPz::Rmpz_perfect_power_p($n);
state $d = Math::GMPz::Rmpz_init_nobless();
state $t = Math::GMPz::Rmpz_init_nobless();
Math::GMPz::Rmpz_set_ui($t, 2);
# Fermat base-2 test (a strong Miller-Rabin test should be preferred instead)
Math::GMPz::Rmpz_sub_ui($d, $n, 1);
Math::GMPz::Rmpz_powm($t, $t, $d, $n);
Math::GMPz::Rmpz_cmp_ui($t, 1) and return 0;
my $P = 1;
my $Q = findQ($n);
Math::GMPz::Rmpz_add_ui($d, $d, 2); # d = n+1
my $s = Math::GMPz::Rmpz_scan1($d, 0); # s = valuation(n, 2)
Math::GMPz::Rmpz_div_2exp($t, $d, $s+1); # t = d >> (s+1)
my $U1 = Math::GMPz::Rmpz_init_set_ui(1);
my ($V1, $V2) = (Math::GMPz::Rmpz_init_set_ui(2), Math::GMPz::Rmpz_init_set_ui($P));
my ($Q1, $Q2) = (Math::GMPz::Rmpz_init_set_ui(1), Math::GMPz::Rmpz_init_set_ui(1));
foreach my $bit (split(//, Math::GMPz::Rmpz_get_str($t, 2))) {
Math::GMPz::Rmpz_mul($Q1, $Q1, $Q2);
Math::GMPz::Rmpz_mod($Q1, $Q1, $n);
if ($bit) {
Math::GMPz::Rmpz_mul_si($Q2, $Q1, $Q);
Math::GMPz::Rmpz_mul($U1, $U1, $V2);
Math::GMPz::Rmpz_mul($V1, $V1, $V2);
Math::GMPz::Rmpz_powm_ui($V2, $V2, 2, $n);
Math::GMPz::Rmpz_sub($V1, $V1, $Q1);
Math::GMPz::Rmpz_submul_ui($V2, $Q2, 2);
Math::GMPz::Rmpz_mod($V1, $V1, $n);
Math::GMPz::Rmpz_mod($U1, $U1, $n);
}
else {
Math::GMPz::Rmpz_set($Q2, $Q1);
Math::GMPz::Rmpz_mul($U1, $U1, $V1);
Math::GMPz::Rmpz_mul($V2, $V2, $V1);
Math::GMPz::Rmpz_sub($U1, $U1, $Q1);
Math::GMPz::Rmpz_powm_ui($V1, $V1, 2, $n);
Math::GMPz::Rmpz_sub($V2, $V2, $Q1);
Math::GMPz::Rmpz_submul_ui($V1, $Q2, 2);
Math::GMPz::Rmpz_mod($V2, $V2, $n);
Math::GMPz::Rmpz_mod($U1, $U1, $n);
}
}
Math::GMPz::Rmpz_mul($Q1, $Q1, $Q2);
Math::GMPz::Rmpz_mul_si($Q2, $Q1, $Q);
Math::GMPz::Rmpz_mul($U1, $U1, $V1);
Math::GMPz::Rmpz_mul($V1, $V1, $V2);
Math::GMPz::Rmpz_sub($U1, $U1, $Q1);
Math::GMPz::Rmpz_sub($V1, $V1, $Q1);
Math::GMPz::Rmpz_mul($Q1, $Q1, $Q2);
if (Math::GMPz::Rmpz_divisible_p($U1, $n)) {
return 1;
}
if (Math::GMPz::Rmpz_divisible_p($V1, $n)) {
return 1;
}
for (1 .. $s-1) {
Math::GMPz::Rmpz_powm_ui($V1, $V1, 2, $n);
Math::GMPz::Rmpz_submul_ui($V1, $Q1, 2);
Math::GMPz::Rmpz_powm_ui($Q1, $Q1, 2, $n);
if (Math::GMPz::Rmpz_divisible_p($V1, $n)) {
return 1;
}
}
return 0;
}
#
## Run some tests
#
use ntheory qw(is_prime);
my $from = 1;
my $to = 1e5;
my $count = 0;
foreach my $n ($from .. $to) {
if (BPSW_primality_test($n)) {
if (not is_prime($n)) {
say "Counter-example: $n";
}
++$count;
}
elsif (is_prime($n)) {
say "Missed a prime: $n";
}
}
say "There are $count primes between $from and $to.";