-
Notifications
You must be signed in to change notification settings - Fork 34
/
carmichael_numbers_in_range_mpz.pl
134 lines (97 loc) · 4.56 KB
/
carmichael_numbers_in_range_mpz.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 22 February 2023
# https://github.com/trizen
# Generate all the Carmichael numbers with n prime factors in a given range [a,b]. (not in sorted order)
# See also:
# https://en.wikipedia.org/wiki/Almost_prime
# https://trizenx.blogspot.com/2020/08/pseudoprimes-construction-methods-and.html
# PARI/GP program (in range) (simple):
# carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(k==1, forprime(p=max(lo, ceil(A/m)), hi, my(t=m*p); if((t-1)%l == 0 && (t-1)%(p-1) == 0, listput(list, t))), forprime(p = lo, hi, my(t = m*p); my(L=lcm(l, p-1)); if(gcd(L, t) == 1, list=concat(list, f(t, L, p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
# PARI/GP program (in range) (faster):
# carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n-1)%(p-1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p-1) == 1, list=concat(list, f(m*p, lcm(l, p-1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
use 5.036;
use Math::GMPz;
use ntheory qw(:all);
sub divceil ($x, $y) { # ceil(x/y)
(($x % $y == 0) ? 0 : 1) + divint($x, $y);
}
sub carmichael_numbers_in_range ($A, $B, $k) {
$A = vecmax($A, pn_primorial($k + 1) >> 1);
$A = Math::GMPz->new("$A");
$B = Math::GMPz->new("$B");
my $u = Math::GMPz::Rmpz_init();
my $v = Math::GMPz::Rmpz_init();
# max_p = floor((1 + sqrt(8*B + 1))/4)
my $max_p = Math::GMPz::Rmpz_init();
Math::GMPz::Rmpz_mul_2exp($max_p, $B, 3);
Math::GMPz::Rmpz_add_ui($max_p, $max_p, 1);
Math::GMPz::Rmpz_sqrt($max_p, $max_p);
Math::GMPz::Rmpz_add_ui($max_p, $max_p, 1);
Math::GMPz::Rmpz_div_2exp($max_p, $max_p, 2);
$max_p = Math::GMPz::Rmpz_get_ui($max_p) if Math::GMPz::Rmpz_fits_ulong_p($max_p);
my @list;
sub ($m, $L, $lo, $k) {
Math::GMPz::Rmpz_tdiv_q($u, $B, $m);
Math::GMPz::Rmpz_root($u, $u, $k);
Math::GMPz::Rmpz_fits_ulong_p($u) || die "Too large value!";
my $hi = Math::GMPz::Rmpz_get_ui($u);
if ($lo > $hi) {
return;
}
if ($k == 1) {
$hi = $max_p if ($max_p < $hi);
Math::GMPz::Rmpz_cdiv_q($u, $A, $m);
if (Math::GMPz::Rmpz_fits_ulong_p($u)) {
$lo = vecmax($lo, Math::GMPz::Rmpz_get_ui($u));
}
elsif (Math::GMPz::Rmpz_cmp_ui($u, $lo) > 0) {
if (Math::GMPz::Rmpz_cmp_ui($u, $hi) > 0) {
return;
}
$lo = Math::GMPz::Rmpz_get_ui($u);
}
if ($lo > $hi) {
return;
}
Math::GMPz::Rmpz_invert($v, $m, $L);
if (Math::GMPz::Rmpz_cmp_ui($v, $hi) > 0) {
return;
}
if (Math::GMPz::Rmpz_fits_ulong_p($L)) {
$L = Math::GMPz::Rmpz_get_ui($L);
}
my $t = Math::GMPz::Rmpz_get_ui($v);
$t > $hi && return;
$t += $L * divceil($lo - $t, $L) if ($t < $lo);
for (my $p = $t ; $p <= $hi ; $p += $L) {
if (is_prime($p)) {
Math::GMPz::Rmpz_mul_ui($v, $m, $p);
Math::GMPz::Rmpz_sub_ui($u, $v, 1);
if (Math::GMPz::Rmpz_divisible_ui_p($u, $p - 1)) {
push @list, Math::GMPz::Rmpz_init_set($v);
}
}
}
return;
}
my $z = Math::GMPz::Rmpz_init();
my $lcm = Math::GMPz::Rmpz_init();
foreach my $p (@{primes($lo, $hi)}) {
Math::GMPz::Rmpz_gcd_ui($Math::GMPz::NULL, $m, $p - 1) == 1 or next;
Math::GMPz::Rmpz_lcm_ui($lcm, $L, $p - 1);
Math::GMPz::Rmpz_mul_ui($z, $m, $p);
__SUB__->($z, $lcm, $p + 1, $k - 1);
}
}
->(Math::GMPz->new(1), Math::GMPz->new(1), 3, $k);
return sort { $a <=> $b } @list;
}
# Generate all the 5-Carmichael numbers in the range [100, 10^8]
my $k = 5;
my $from = 100;
my $upto = 1e8;
my @arr = carmichael_numbers_in_range($from, $upto, $k);
say join(', ', @arr);
__END__
825265, 1050985, 9890881, 10877581, 12945745, 13992265, 16778881, 18162001, 27336673, 28787185, 31146661, 36121345, 37167361, 40280065, 41298985, 41341321, 41471521, 47006785, 67371265, 67994641, 69331969, 74165065, 75151441, 76595761, 88689601, 93614521, 93869665