-
Notifications
You must be signed in to change notification settings - Fork 34
/
faulhaber_s_formula.pl
executable file
·75 lines (57 loc) · 1.76 KB
/
faulhaber_s_formula.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/perl
# Author: Daniel "Trizen" Șuteu
# License: GPLv3
# Date: 03 September 2015
# Website: https://github.com/trizen
# The formula for calculating the sum of consecutive
# numbers raised to a given power, such as:
# 1^p + 2^p + 3^p + ... + n^p
# where p is a positive integer.
# See also: https://en.wikipedia.org/wiki/Faulhaber%27s_formula
use 5.010;
use strict;
use warnings;
use Math::AnyNum qw(:overload binomial);
# This function returns the nth Bernoulli number
# See: https://en.wikipedia.org/wiki/Bernoulli_number
sub bernoulli_number {
my ($n) = @_;
return 0 if $n > 1 && $n % 2; # Bn = 0 for all odd n > 1
my @A;
for my $m (0 .. $n) {
$A[$m] = 1 / ($m + 1);
for (my $j = $m ; $j > 0 ; $j--) {
$A[$j - 1] = $j * ($A[$j - 1] - $A[$j]);
}
}
return $A[0]; # which is Bn
}
# The Faulhaber's formula
# See: https://en.wikipedia.org/wiki/Faulhaber%27s_formula
sub faulhaber_s_formula {
my ($p, $n) = @_;
my $sum = 0;
for my $j (0 .. $p) {
$sum += binomial($p + 1, $j) * bernoulli_number($j) * ($n + 1)**($p + 1 - $j);
}
$sum / ($p + 1);
}
# Alternate expression using Bernoulli polynomials
# See: https://en.wikipedia.org/wiki/Faulhaber%27s_formula#Alternate_expressions
sub bernoulli_polynomials {
my ($n, $x) = @_;
my $sum = 0;
for my $k (0 .. $n) {
$sum += binomial($n, $k) * bernoulli_number($n - $k) * $x**$k;
}
$sum;
}
sub faulhaber_s_formula_2 {
my ($p, $n) = @_;
1 + (bernoulli_polynomials($p + 1, $n + 1) - bernoulli_polynomials($p + 1, 1)) / ($p + 1);
}
# Test for 1^4 + 2^4 + 3^4 + ... + 10^4
foreach my $i (0 .. 10) {
say "$i: ", faulhaber_s_formula(4, $i);
say "$i: ", faulhaber_s_formula_2(4, $i);
}