-
Notifications
You must be signed in to change notification settings - Fork 34
/
fibonacci_k-th_order_odd_primes_indices.pl
executable file
·60 lines (43 loc) · 1.29 KB
/
fibonacci_k-th_order_odd_primes_indices.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/perl
# Daniel "Trizen" Șuteu and M. F. Hasler
# Date: 20 April 2018
# Edit: 23 April 2018
# https://github.com/trizen
# Find the first index of the odd prime number in the nth-order Fibonacci sequence.
# See also:
# https://oeis.org/A302990
use 5.020;
use strict;
use warnings;
use Math::GMPz;
my $ONE = Math::GMPz->new(1);
use ntheory qw(is_prob_prime);
use experimental qw(signatures);
sub nth_order_prime_fibonacci_index ($n = 2, $min = 0) {
# Algorithm after M. F. Hasler from https://oeis.org/A302990
my @a = map { $_ < $n ? ($ONE << $_) : $ONE } 1 .. ($n + 1);
for (my $i = 2 * ($n += 1) - 2 ; ; ++$i) {
my $t = $i % $n;
$a[$t] = ($a[$t-1] << 1) - $a[$t];
if ($i >= $min and Math::GMPz::Rmpz_odd_p($a[$t])) {
#say "Testing: $i";
if (is_prob_prime($a[$t])) {
#say "\nFound: $t -> $i\n";
return $i;
}
}
}
}
# a(33) = 94246
# a(36) = ?
# a(37) = 758
# a(38) = ?
# a(39) = ?
# a(36) > 170050 (M. F. Hasler)
# a(38) > 40092
# a(41) > 142000 (M. F. Hasler)
# a(100) > 48076
# Example for computing the terms a(2)-a(26):
say join ", ", map{ nth_order_prime_fibonacci_index($_) } 2..26;
# Searching for a(36)
# say nth_order_prime_fibonacci_index(36, 170051);