-
Notifications
You must be signed in to change notification settings - Fork 34
/
modular_lucas_numbers.pl
executable file
·68 lines (49 loc) · 1.64 KB
/
modular_lucas_numbers.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/perl
# Efficient algorithm for computing the nth-Lucas number (mod m).
# Algorithm from:
# https://metacpan.org/source/KRYDE/Math-NumSeq-72/lib/Math/NumSeq/LucasNumbers.pm
# See also:
# https://en.wikipedia.org/wiki/Lucas_number
use 5.020;
use warnings;
use experimental qw(signatures);
use Math::GMPz;
use Math::Prime::Util::GMP qw(gcd consecutive_integer_lcm);
sub lucasmod ($n, $m) {
$n = Math::GMPz->new("$n");
$m = Math::GMPz->new("$m");
my ($f, $g, $w) = (
Math::GMPz::Rmpz_init_set_ui(3),
Math::GMPz::Rmpz_init_set_ui(1),
);
foreach my $bit (split(//, substr(Math::GMPz::Rmpz_get_str($n, 2), 1))) {
Math::GMPz::Rmpz_powm_ui($g, $g, 2, $m);
Math::GMPz::Rmpz_powm_ui($f, $f, 2, $m);
$w
? do {
Math::GMPz::Rmpz_sub_ui($g, $g, 2);
Math::GMPz::Rmpz_add_ui($f, $f, 2);
}
: do {
Math::GMPz::Rmpz_add_ui($g, $g, 2);
Math::GMPz::Rmpz_sub_ui($f, $f, 2);
};
if ($bit) {
Math::GMPz::Rmpz_sub($g, $f, $g);
$w = 0;
}
else {
Math::GMPz::Rmpz_sub($f, $f, $g);
$w = 1;
}
}
Math::GMPz::Rmpz_mod($g, $g, $m);
return $g;
}
sub lucas_factorization ($n, $B = 10000) {
my $k = consecutive_integer_lcm($B); # lcm(1..B)
my $L = lucasmod($k, $n); # Lucas(k) (mod n)
return gcd($L - 2, $n);
}
say lucas_factorization("121095274043", 700); #=> 470783 (p+1 is 700-smooth)
say lucas_factorization("544812320889004864776853", 3000); #=> 333732865481 (p-1 is 3000-smooth)