-
Notifications
You must be signed in to change notification settings - Fork 34
/
partial_sums_of_euler_totient_function_times_k.pl
105 lines (79 loc) · 2.65 KB
/
partial_sums_of_euler_totient_function_times_k.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 05 April 2022
# https://github.com/trizen
# A sublinear algorithm for computing the partial sums of the Euler totient function times k.
# The partial sums of the Euler totient function is defined as:
#
# a(n,m) = Sum_{k=1..n} k * phi(k)
#
# where phi(k) is the Euler totient function.
# Example:
# a(10^1) = 217
# a(10^2) = 203085
# a(10^3) = 202870719
# a(10^4) = 202653667159
# a(10^5) = 202643891472849
# a(10^6) = 202642368741515819
# a(10^7) = 202642380629476099463
# a(10^8) = 202642367994273571457613
# a(10^9) = 202642367530671221417109931
# a(10^10) = 202642367286524384080814204093
# General asymptotic formula:
#
# Sum_{k=1..n} k^m * phi(k) ~ F_(m+1)(n) / zeta(2).
#
# where F_m(n) are the Faulhaber polynomials.
# OEIS sequences:
# https://oeis.org/A011755 -- Sum_{k=1..n} k*phi(k).
# https://oeis.org/A002088 -- Sum of totient function: a(n) = Sum_{k=1..n} phi(k).
# https://oeis.org/A064018 -- Sum of the Euler totients phi for 10^n.
# https://oeis.org/A272718 -- Partial sums of gcd-sum sequence A018804.
# See also:
# https://en.wikipedia.org/wiki/Faulhaber's_formula
# https://en.wikipedia.org/wiki/Dirichlet_hyperbola_method
# https://trizenx.blogspot.com/2018/11/partial-sums-of-arithmetical-functions.html
use 5.020;
use strict;
use warnings;
use experimental qw(signatures);
use ntheory qw(:all);
sub triangular ($n) {
divint(mulint($n, $n + 1), 2);
}
sub square_pyramidal ($n) {
divint(vecprod($n, $n + 1, mulint(2, $n) + 1), 6);
}
sub partial_sums_of_euler_totient ($n) {
my $s = sqrtint($n);
my @euler_sum_lookup = (0);
my $lookup_size = int(2 * rootint($n, 3)**2);
my @euler_phi = euler_phi(0, $lookup_size);
foreach my $i (1 .. $lookup_size) {
$euler_sum_lookup[$i] = addint($euler_sum_lookup[$i - 1], mulint($i, $euler_phi[$i]));
}
my %seen;
sub ($n) {
if ($n <= $lookup_size) {
return $euler_sum_lookup[$n];
}
if (exists $seen{$n}) {
return $seen{$n};
}
my $s = sqrtint($n);
my $T = square_pyramidal($n);
foreach my $k (2 .. divint($n, $s + 1)) {
$T = subint($T, mulint($k, __SUB__->(divint($n, $k))));
}
my $prev = triangular($n);
foreach my $k (1 .. $s) {
my $curr = triangular(divint($n, $k + 1));
$T = subint($T, mulint(subint($prev, $curr), __SUB__->($k)));
$prev = $curr;
}
$seen{$n} = $T;
}->($n);
}
foreach my $n (1 .. 8) { # takes ~5 seconds
say "a(10^$n) = ", partial_sums_of_euler_totient(powint(10, $n));
}