-
Notifications
You must be signed in to change notification settings - Fork 0
/
agents.py
533 lines (440 loc) · 19.6 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""Implement Agents and Environments (Chapters 1-2).
The class hierarchies are as follows:
Object ## A physical object that can exist in an environment
Agent
Wumpus
RandomAgent
ReflexVacuumAgent
...
Dirt
Wall
...
Environment ## An environment holds objects, runs simulations
XYEnvironment
VacuumEnvironment
WumpusEnvironment
EnvFrame ## A graphical representation of the Environment
"""
from utils import *
import random, copy
#______________________________________________________________________________
class Object:
"""This represents any physical object that can appear in an Environment.
You subclass Object to get the objects you want. Each object can have a
.__name__ slot (used for output only)."""
def __repr__(self):
return '<%s>' % getattr(self, '__name__', self.__class__.__name__)
def is_alive(self):
"""Objects that are 'alive' should return true."""
return hasattr(self, 'alive') and self.alive
def display(self, canvas, x, y, width, height):
"""Display an image of this Object on the canvas."""
pass
class Agent(Object):
"""An Agent is a subclass of Object with one required slot,
.program, which should hold a function that takes one argument, the
percept, and returns an action. (What counts as a percept or action
will depend on the specific environment in which the agent exists.)
Note that 'program' is a slot, not a method. If it were a method,
then the program could 'cheat' and look at aspects of the agent.
It's not supposed to do that: the program can only look at the
percepts. An agent program that needs a model of the world (and of
the agent itself) will have to build and maintain its own model.
There is an optional slots, .performance, which is a number giving
the performance measure of the agent in its environment."""
def __init__(self):
def program(percept):
return raw_input('Percept=%s; action? ' % percept)
self.program = program
self.alive = True
def TraceAgent(agent):
"""Wrap the agent's program to print its input and output. This will let
you see what the agent is doing in the environment."""
old_program = agent.program
def new_program(percept):
action = old_program(percept)
print '%s perceives %s and does %s' % (agent, percept, action)
return action
agent.program = new_program
return agent
#______________________________________________________________________________
class TableDrivenAgent(Agent):
"""This agent selects an action based on the percept sequence.
It is practical only for tiny domains.
To customize it you provide a table to the constructor. [Fig. 2.7]"""
def __init__(self, table):
"Supply as table a dictionary of all {percept_sequence:action} pairs."
## The agent program could in principle be a function, but because
## it needs to store state, we make it a callable instance of a class.
Agent.__init__(self)
percepts = []
def program(percept):
percepts.append(percept)
action = table.get(tuple(percepts))
return action
self.program = program
class RandomAgent(Agent):
"An agent that chooses an action at random, ignoring all percepts."
def __init__(self, actions):
Agent.__init__(self)
self.program = lambda percept: random.choice(actions)
#______________________________________________________________________________
loc_A, loc_B = (0, 0), (1, 0) # The two locations for the Vacuum world
class ReflexVacuumAgent(Agent):
"A reflex agent for the two-state vacuum environment. [Fig. 2.8]"
def __init__(self):
Agent.__init__(self)
def program((location, status)):
if status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
self.program = program
def RandomVacuumAgent():
"Randomly choose one of the actions from the vaccum environment."
return RandomAgent(['Right', 'Left', 'Suck', 'NoOp'])
def TableDrivenVacuumAgent():
"[Fig. 2.3]"
table = {((loc_A, 'Clean'),): 'Right',
((loc_A, 'Dirty'),): 'Suck',
((loc_B, 'Clean'),): 'Left',
((loc_B, 'Dirty'),): 'Suck',
((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
}
return TableDrivenAgent(table)
class ModelBasedVacuumAgent(Agent):
"An agent that keeps track of what locations are clean or dirty."
def __init__(self):
Agent.__init__(self)
model = {loc_A: None, loc_B: None}
def program((location, status)):
"Same as ReflexVacuumAgent, except if everything is clean, do NoOp"
model[location] = status ## Update the model here
if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp'
elif status == 'Dirty': return 'Suck'
elif location == loc_A: return 'Right'
elif location == loc_B: return 'Left'
self.program = program
#______________________________________________________________________________
class Environment:
"""Abstract class representing an Environment. 'Real' Environment classes
inherit from this. Your Environment will typically need to implement:
percept: Define the percept that an agent sees.
execute_action: Define the effects of executing an action.
Also update the agent.performance slot.
The environment keeps a list of .objects and .agents (which is a subset
of .objects). Each agent has a .performance slot, initialized to 0.
Each object has a .location slot, even though some environments may not
need this."""
def __init__(self,):
self.objects = []; self.agents = []
object_classes = [] ## List of classes that can go into environment
def percept(self, agent):
"Return the percept that the agent sees at this point. Override this."
abstract
def execute_action(self, agent, action):
"Change the world to reflect this action. Override this."
abstract
def default_location(self, object):
"Default location to place a new object with unspecified location."
return None
def exogenous_change(self):
"If there is spontaneous change in the world, override this."
pass
def is_done(self):
"By default, we're done when we can't find a live agent."
for agent in self.agents:
if agent.is_alive(): return False
return True
def step(self):
"""Run the environment for one time step. If the
actions and exogenous changes are independent, this method will
do. If there are interactions between them, you'll need to
override this method."""
if not self.is_done():
actions = [agent.program(self.percept(agent))
for agent in self.agents]
for (agent, action) in zip(self.agents, actions):
self.execute_action(agent, action)
self.exogenous_change()
def run(self, steps=1000):
"""Run the Environment for given number of time steps."""
for step in range(steps):
if self.is_done(): return
self.step()
def add_object(self, object, location=None):
"""Add an object to the environment, setting its location. Also keep
track of objects that are agents. Shouldn't need to override this."""
object.location = location or self.default_location(object)
self.objects.append(object)
if isinstance(object, Agent):
object.performance = 0
self.agents.append(object)
return self
class XYEnvironment(Environment):
"""This class is for environments on a 2D plane, with locations
labelled by (x, y) points, either discrete or continuous. Agents
perceive objects within a radius. Each agent in the environment
has a .location slot which should be a location such as (0, 1),
and a .holding slot, which should be a list of objects that are
held """
def __init__(self, width=10, height=10):
update(self, objects=[], agents=[], width=width, height=height)
def objects_at(self, location):
"Return all objects exactly at a given location."
return [obj for obj in self.objects if obj.location == location]
def objects_near(self, location, radius):
"Return all objects within radius of location."
radius2 = radius * radius
return [obj for obj in self.objects
if distance2(location, obj.location) <= radius2]
def percept(self, agent):
"By default, agent perceives objects within radius r."
return [self.object_percept(obj, agent)
for obj in self.objects_near(agent)]
def execute_action(self, agent, action):
if action == 'TurnRight':
agent.heading = turn_heading(agent.heading, -1)
elif action == 'TurnLeft':
agent.heading = turn_heading(agent.heading, +1)
elif action == 'Forward':
self.move_to(agent, vector_add(agent.heading, agent.location))
elif action == 'Grab':
objs = [obj for obj in self.objects_at(agent.location)
if obj.is_grabable(agent)]
if objs:
agent.holding.append(objs[0])
elif action == 'Release':
if agent.holding:
agent.holding.pop()
agent.bump = False
def object_percept(self, obj, agent): #??? Should go to object?
"Return the percept for this object."
return obj.__class__.__name__
def default_location(self, object):
return (random.choice(self.width), random.choice(self.height))
def move_to(object, destination):
"Move an object to a new location."
def add_object(self, object, location=(1, 1)):
Environment.add_object(self, object, location)
object.holding = []
object.held = None
self.objects.append(object)
def add_walls(self):
"Put walls around the entire perimeter of the grid."
for x in range(self.width):
self.add_object(Wall(), (x, 0))
self.add_object(Wall(), (x, self.height-1))
for y in range(self.height):
self.add_object(Wall(), (0, y))
self.add_object(Wall(), (self.width-1, y))
def turn_heading(self, heading, inc,
headings=[(1, 0), (0, 1), (-1, 0), (0, -1)]):
"Return the heading to the left (inc=+1) or right (inc=-1) in headings."
return headings[(headings.index(heading) + inc) % len(headings)]
#______________________________________________________________________________
## Vacuum environment
class TrivialVacuumEnvironment(Environment):
"""This environment has two locations, A and B. Each can be Dirty or Clean.
The agent perceives its location and the location's status. This serves as
an example of how to implement a simple Environment."""
def __init__(self):
Environment.__init__(self)
self.status = {loc_A:random.choice(['Clean', 'Dirty']),
loc_B:random.choice(['Clean', 'Dirty'])}
def percept(self, agent):
"Returns the agent's location, and the location status (Dirty/Clean)."
return (agent.location, self.status[agent.location])
def execute_action(self, agent, action):
"""Change agent's location and/or location's status; track performance.
Score 10 for each dirt cleaned; -1 for each move."""
if action == 'Right':
agent.location = loc_B
agent.performance -= 1
elif action == 'Left':
agent.location = loc_A
agent.performance -= 1
elif action == 'Suck':
if self.status[agent.location] == 'Dirty':
agent.performance += 10
self.status[agent.location] = 'Clean'
def default_location(self, object):
"Agents start in either location at random."
return random.choice([loc_A, loc_B])
class Dirt(Object): pass
class Wall(Object): pass
class VacuumEnvironment(XYEnvironment):
"""The environment of [Ex. 2.12]. Agent perceives dirty or clean,
and bump (into obstacle) or not; 2D discrete world of unknown size;
performance measure is 100 for each dirt cleaned, and -1 for
each turn taken."""
def __init__(self, width=10, height=10):
XYEnvironment.__init__(self, width, height)
self.add_walls()
object_classes = [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"""The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None').
Unlike the TrivialVacuumEnvironment, location is NOT perceived."""
status = if_(self.find_at(Dirt, agent.location), 'Dirty', 'Clean')
bump = if_(agent.bump, 'Bump', 'None')
return (status, bump)
def execute_action(self, agent, action):
if action == 'Suck':
if self.find_at(Dirt, agent.location):
agent.performance += 100
agent.performance -= 1
XYEnvironment.execute_action(self, agent, action)
#______________________________________________________________________________
class SimpleReflexAgent(Agent):
"""This agent takes action based solely on the percept. [Fig. 2.13]"""
def __init__(self, rules, interpret_input):
Agent.__init__(self)
def program(percept):
state = interpret_input(percept)
rule = rule_match(state, rules)
action = rule.action
return action
self.program = program
class ReflexAgentWithState(Agent):
"""This agent takes action based on the percept and state. [Fig. 2.16]"""
def __init__(self, rules, udpate_state):
Agent.__init__(self)
state, action = None, None
def program(percept):
state = update_state(state, action, percept)
rule = rule_match(state, rules)
action = rule.action
return action
self.program = program
#______________________________________________________________________________
## The Wumpus World
class Gold(Object): pass
class Pit(Object): pass
class Arrow(Object): pass
class Wumpus(Agent): pass
class Explorer(Agent): pass
class WumpusEnvironment(XYEnvironment):
object_classes = [Wall, Gold, Pit, Arrow, Wumpus, Explorer]
def __init__(self, width=10, height=10):
XYEnvironment.__init__(self, width, height)
self.add_walls()
## Needs a lot of work ...
#______________________________________________________________________________
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000):
"""See how well each of several agents do in n instances of an environment.
Pass in a factory (constructor) for environments, and several for agents.
Create n instances of the environment, and run each agent in copies of
each one for steps. Return a list of (agent, average-score) tuples."""
envs = [EnvFactory() for i in range(n)]
return [(A, test_agent(A, steps, copy.deepcopy(envs)))
for A in AgentFactories]
def test_agent(AgentFactory, steps, envs):
"Return the mean score of running an agent in each of the envs, for steps"
total = 0
for env in envs:
agent = AgentFactory()
env.add_object(agent)
env.run(steps)
total += agent.performance
return float(total)/len(envs)
#______________________________________________________________________________
_docex = """
a = ReflexVacuumAgent()
a.program
a.program((loc_A, 'Clean')) ==> 'Right'
a.program((loc_B, 'Clean')) ==> 'Left'
a.program((loc_A, 'Dirty')) ==> 'Suck'
a.program((loc_A, 'Dirty')) ==> 'Suck'
e = TrivialVacuumEnvironment()
e.add_object(TraceAgent(ModelBasedVacuumAgent()))
e.run(5)
## Environments, and some agents, are randomized, so the best we can
## give is a range of expected scores. If this test fails, it does
## not necessarily mean something is wrong.
envs = [TrivialVacuumEnvironment() for i in range(100)]
def testv(A): return test_agent(A, 4, copy.deepcopy(envs))
testv(ModelBasedVacuumAgent)
(7 < _ < 11) ==> True
testv(ReflexVacuumAgent)
(5 < _ < 9) ==> True
testv(TableDrivenVacuumAgent)
(2 < _ < 6) ==> True
testv(RandomVacuumAgent)
(0.5 < _ < 3) ==> True
"""
#______________________________________________________________________________
# GUI - Graphical User Interface for Environments
# If you do not have Tkinter installed, either get a new installation of Python
# (Tkinter is standard in all new releases), or delete the rest of this file
# and muddle through without a GUI.
'''
import Tkinter as tk
class EnvFrame(tk.Frame):
def __init__(self, env, title='AIMA GUI', cellwidth=50, n=10):
update(self, cellwidth = cellwidth, running=False, delay=1.0)
self.n = n
self.running = 0
self.delay = 1.0
self.env = env
tk.Frame.__init__(self, None, width=(cellwidth+2)*n, height=(cellwidth+2)*n)
#self.title(title)
# Toolbar
toolbar = tk.Frame(self, relief='raised', bd=2)
toolbar.pack(side='top', fill='x')
for txt, cmd in [('Step >', self.env.step), ('Run >>', self.run),
('Stop [ ]', self.stop)]:
tk.Button(toolbar, text=txt, command=cmd).pack(side='left')
tk.Label(toolbar, text='Delay').pack(side='left')
scale = tk.Scale(toolbar, orient='h', from_=0.0, to=10, resolution=0.5,
command=lambda d: setattr(self, 'delay', d))
scale.set(self.delay)
scale.pack(side='left')
# Canvas for drawing on
self.canvas = tk.Canvas(self, width=(cellwidth+1)*n,
height=(cellwidth+1)*n, background="white")
self.canvas.bind('<Button-1>', self.left) ## What should this do?
self.canvas.bind('<Button-2>', self.edit_objects)
self.canvas.bind('<Button-3>', self.add_object)
if cellwidth:
c = self.canvas
for i in range(1, n+1):
c.create_line(0, i*cellwidth, n*cellwidth, i*cellwidth)
c.create_line(i*cellwidth, 0, i*cellwidth, n*cellwidth)
c.pack(expand=1, fill='both')
self.pack()
def background_run(self):
if self.running:
self.env.step()
ms = int(1000 * max(float(self.delay), 0.5))
self.after(ms, self.background_run)
def run(self):
print 'run'
self.running = 1
self.background_run()
def stop(self):
print 'stop'
self.running = 0
def left(self, event):
print 'left at ', event.x/50, event.y/50
def edit_objects(self, event):
"""Choose an object within radius and edit its fields."""
pass
def add_object(self, event):
## This is supposed to pop up a menu of Object classes; you choose the one
## You want to put in this square. Not working yet.
menu = tk.Menu(self, title='Edit (%d, %d)' % (event.x/50, event.y/50))
for (txt, cmd) in [('Wumpus', self.run), ('Pit', self.run)]:
menu.add_command(label=txt, command=cmd)
menu.tk_popup(event.x + self.winfo_rootx(),
event.y + self.winfo_rooty())
#image=PhotoImage(file=r"C:\Documents and Settings\pnorvig\Desktop\wumpus.gif")
#self.images = []
#self.images.append(image)
#c.create_image(200,200,anchor=NW,image=image)
#v = VacuumEnvironment(); w = EnvFrame(v);
'''