Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Defining observed model states and observation process in model declaration #49

Open
twallema opened this issue Jun 8, 2023 · 1 comment
Assignees
Labels
enhancement New feature or request

Comments

@twallema
Copy link
Owner

twallema commented Jun 8, 2023

Current implementation

# Import the ODEModel class
from pySODM.models.base import ODEModel

# Define the model equations
class ODE_SIR(ODEModel):
    """
    Simple SIR model without dimensions
    """
    
    state_names = ['S','I','R']
    parameter_names = ['beta','gamma']

    @staticmethod
    def integrate(t, S, I, R, beta, gamma):
        
        # Calculate total population
        N = S+I+R
        # Calculate differentials
        dS = -beta*S*I/N
        dI = beta*S*I/N - 1/gamma*I
        dR = 1/gamma*I

        return dS, dI, dR

# Define parameters and initial condition
params={'beta':0.35, 'gamma':5}
init_states = {'S': 1000, 'I': 1}

# Initialize model
model = ODE_SIR(states=init_states, parameters=params)

# Define dataset
data=[d, ]
states = ["I",]
log_likelihood_fnc = [ll_negative_binomial,]
log_likelihood_fnc_args = [alpha,]

# Calibated parameters and bounds
pars = ['beta',]
labels = ['$\\beta$',]
bounds = [(1e-6,1),]

# Setup objective function (no priors --> uniform priors based on bounds)
objective_function = log_posterior_probability(model, pars, bounds, data, states, log_likelihood_fnc, log_likelihood_fnc_args, labels=labels)

Proposed implementation

Define what states are observed, and what statistical process underpins the observations in the model declaration. Then provide the parameters of the observation process (if any) upon model declaration. When simulating the model, automatically add the observation noise to the observed states, thus avoiding the use of add_gaussian_noise() or add_poisson_noise(). This further simplifies the call to log_posterior_probability.

# Import the ODEModel class
from pySODM.models.base import ODEModel

# Define the model equations
class ODE_SIR(ODEModel):
    """
    Simple SIR model without dimensions
    """
    
    state_names = ['S','I','R']
    observed_state_names = ['I']
    observation_process = ['negative_binomial']
    parameter_names = ['beta','gamma']

    @staticmethod
    def integrate(t, S, I, R, beta, gamma):
        
        # Calculate total population
        N = S+I+R
        # Calculate differentials
        dS = -beta*S*I/N
        dI = beta*S*I/N - 1/gamma*I
        dR = 1/gamma*I

        return dS, dI, dR

# Define parameters and initial condition
params={'beta':0.35, 'gamma':5}
init_states = {'S': 1000, 'I': 1}

# Define the parameters of the observation process
observation_process_params = {'I': 0.04} # overdispersion parameter `alpha` 

# Initialize model
model = ODE_SIR(states=init_states, parameters=params, observation_parameters=observation_process_params)

# Define dataset
data=[d, ]
states=[I,]

# Calibated parameters and bounds
pars = ['beta',]
labels = ['$\\beta$',]
bounds = [(1e-6,1),]

# Setup objective function (no priors --> uniform priors based on bounds)
objective_function = log_posterior_probability(model, pars, bounds, data, states, labels=labels)
@twallema twallema added the enhancement New feature or request label Jun 8, 2023
@twallema twallema self-assigned this Jun 8, 2023
@twallema
Copy link
Owner Author

Perhaps add the ability to add a delay to the observation?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

1 participant