-
Notifications
You must be signed in to change notification settings - Fork 17
/
CombinedBinHAndCluc.py
75 lines (66 loc) · 3.15 KB
/
CombinedBinHAndCluc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# --- Do not remove these libs ---
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
# --------------------------------
import talib.abstract as ta
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
def bollinger_bands(stock_price, window_size, num_of_std):
rolling_mean = stock_price.rolling(window=window_size).mean()
rolling_std = stock_price.rolling(window=window_size).std()
lower_band = rolling_mean - (rolling_std * num_of_std)
return np.nan_to_num(rolling_mean), np.nan_to_num(lower_band)
class CombinedBinHAndCluc(IStrategy):
# Based on a backtesting:
# - the best perfomance is reached with "max_open_trades" = 2 (in average for any market),
# so it is better to increase "stake_amount" value rather then "max_open_trades" to get more profit
# - if the market is constantly green(like in JAN 2018) the best performance is reached with
# "max_open_trades" = 2 and minimal_roi = 0.01
minimal_roi = {
"0": 0.05
}
stoploss = -0.05
timeframe = '5m'
use_sell_signal = True
sell_profit_only = True
ignore_roi_if_buy_signal = False
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# strategy BinHV45
mid, lower = bollinger_bands(dataframe['close'], window_size=40, num_of_std=2)
dataframe['lower'] = lower
dataframe['bbdelta'] = (mid - dataframe['lower']).abs()
dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()
# strategy ClucMay72018
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=50)
dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=30).mean()
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
( # strategy BinHV45
dataframe['lower'].shift().gt(0) &
dataframe['bbdelta'].gt(dataframe['close'] * 0.008) &
dataframe['closedelta'].gt(dataframe['close'] * 0.0175) &
dataframe['tail'].lt(dataframe['bbdelta'] * 0.25) &
dataframe['close'].lt(dataframe['lower'].shift()) &
dataframe['close'].le(dataframe['close'].shift())
) |
( # strategy ClucMay72018
(dataframe['close'] < dataframe['ema_slow']) &
(dataframe['close'] < 0.985 * dataframe['bb_lowerband']) &
(dataframe['volume'] < (dataframe['volume_mean_slow'].shift(1) * 20))
),
'buy'
] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
"""
dataframe.loc[
(dataframe['close'] > dataframe['bb_middleband']),
'sell'
] = 1
return dataframe