-
Notifications
You must be signed in to change notification settings - Fork 130
/
eval.py
93 lines (74 loc) · 3.22 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import matlab.engine
import argparse, os
import torch
from torch.autograd import Variable
import numpy as np
import time, math, glob
import scipy.io as sio
import cv2
parser = argparse.ArgumentParser(description="PyTorch SRResNet Eval")
parser.add_argument("--cuda", action="store_true", help="use cuda?")
parser.add_argument("--model", default="model/model_srresnet.pth", type=str, help="model path")
parser.add_argument("--dataset", default="Set5", type=str, help="dataset name, Default: Set5")
parser.add_argument("--scale", default=4, type=int, help="scale factor, Default: 4")
parser.add_argument("--gpus", default="0", type=str, help="gpu ids (default: 0)")
def PSNR(pred, gt, shave_border=0):
height, width = pred.shape[:2]
pred = pred[shave_border:height - shave_border, shave_border:width - shave_border]
gt = gt[shave_border:height - shave_border, shave_border:width - shave_border]
imdff = pred - gt
rmse = math.sqrt(np.mean(imdff ** 2))
if rmse == 0:
return 100
return 20 * math.log10(255.0 / rmse)
opt = parser.parse_args()
cuda = opt.cuda
eng = matlab.engine.start_matlab()
if cuda:
print("=> use gpu id: '{}'".format(opt.gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
model = torch.load(opt.model)["model"]
image_list = glob.glob("./testsets/" + opt.dataset + "/*.*")
avg_psnr_predicted = 0.0
avg_psnr_bicubic = 0.0
avg_elapsed_time = 0.0
for image_name in image_list:
print("Processing ", image_name)
im_gt_y = sio.loadmat(image_name)['im_gt_y']
im_b_y = sio.loadmat(image_name)['im_b_y']
im_l = sio.loadmat(image_name)['im_l']
im_gt_y = im_gt_y.astype(float)
im_b_y = im_b_y.astype(float)
im_l = im_l.astype(float)
psnr_bicubic = PSNR(im_gt_y, im_b_y,shave_border=opt.scale)
avg_psnr_bicubic += psnr_bicubic
im_input = im_l.astype(np.float32).transpose(2,0,1)
im_input = im_input.reshape(1,im_input.shape[0],im_input.shape[1],im_input.shape[2])
im_input = Variable(torch.from_numpy(im_input/255.).float())
if cuda:
model = model.cuda()
im_input = im_input.cuda()
else:
model = model.cpu()
start_time = time.time()
HR_4x = model(im_input)
elapsed_time = time.time() - start_time
avg_elapsed_time += elapsed_time
HR_4x = HR_4x.cpu()
im_h = HR_4x.data[0].numpy().astype(np.float32)
im_h = im_h*255.
im_h = np.clip(im_h, 0., 255.)
im_h = im_h.transpose(1,2,0).astype(np.float32)
im_h_matlab = matlab.double((im_h / 255.).tolist())
im_h_ycbcr = eng.rgb2ycbcr(im_h_matlab)
im_h_ycbcr = np.array(im_h_ycbcr._data).reshape(im_h_ycbcr.size, order='F').astype(np.float32) * 255.
im_h_y = im_h_ycbcr[:,:,0]
psnr_predicted = PSNR(im_gt_y, im_h_y,shave_border=opt.scale)
avg_psnr_predicted += psnr_predicted
print("Scale=", opt.scale)
print("Dataset=", opt.dataset)
print("PSNR_predicted=", avg_psnr_predicted/len(image_list))
print("PSNR_bicubic=", avg_psnr_bicubic/len(image_list))
print("It takes average {}s for processing".format(avg_elapsed_time/len(image_list)))