forked from apple/ml-neuman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
render_360.py
164 lines (147 loc) · 6.83 KB
/
render_360.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#
# Copyright (C) 2022 Apple Inc. All rights reserved.
#
'''
Render 360 views of a Da-posed human.
Render 360 views of a posed human.
Examples:
python render_360.py --scene_dir ./data/seattle --use_cuda=no --white_bkg=yes --rays_per_batch=2048 --trajectory_resolution=40 --weights_path ./out/seattle_human/checkpoint.pth.tar --render_h=72 --render_w=128 --mode canonical_360 --can_posenc rotate
python render_360.py --scene_dir ./data/seattle --use_cuda=no --white_bkg=yes --rays_per_batch=2048 --trajectory_resolution=40 --weights_path ./out/seattle_human/checkpoint.pth.tar --render_h=72 --render_w=128 --mode posed_360 --can_posenc rotate
'''
import os
import argparse
import imageio
import torch
import numpy as np
from cameras.captures import ResizedPinholeCapture
from cameras.pinhole_camera import PinholeCamera
from models import human_nerf
from utils import render_utils, utils
from data_io import neuman_helper
from options import options
from utils.constant import CANONICAL_ZOOM_FACTOR, CANONICAL_CAMERA_DIST
def main_canonical_360(opt):
scene = neuman_helper.NeuManReader.read_scene(
opt.scene_dir,
tgt_size=opt.render_size,
normalize=opt.normalize,
bkg_range_scale=opt.bkg_range_scale,
human_range_scale=opt.human_range_scale
)
if opt.geo_threshold < 0:
can_bones = []
bones = []
for i in range(len(scene.captures)):
bones.append(np.linalg.norm(scene.smpls[i]['joints_3d'][3] - scene.smpls[i]['joints_3d'][0]))
can_bones.append(np.linalg.norm(scene.smpls[i]['static_joints_3d'][3] - scene.smpls[i]['static_joints_3d'][0]))
opt.geo_threshold = np.mean(bones)
net = human_nerf.HumanNeRF(opt)
weights = torch.load(opt.weights_path, map_location='cpu')
utils.safe_load_weights(net, weights['hybrid_model_state_dict'])
center, up = utils.smpl_verts_to_center_and_up(scene.static_vert[0])
render_poses = render_utils.default_360_path(center, up, CANONICAL_CAMERA_DIST, opt.trajectory_resolution)
for i, rp in enumerate(render_poses):
can_cap = ResizedPinholeCapture(
PinholeCamera(
scene.captures[0].pinhole_cam.width,
scene.captures[0].pinhole_cam.height,
CANONICAL_ZOOM_FACTOR * scene.captures[0].pinhole_cam.width,
CANONICAL_ZOOM_FACTOR * scene.captures[0].pinhole_cam.width,
scene.captures[0].pinhole_cam.width / 2.0,
scene.captures[0].pinhole_cam.height / 2.0,
),
rp,
tgt_size=scene.captures[0].pinhole_cam.shape
)
out = render_utils.render_smpl_nerf(
net,
can_cap,
scene.static_vert[0],
scene.faces,
Ts=None,
rays_per_batch=opt.rays_per_batch,
samples_per_ray=opt.samples_per_ray,
render_can=True,
return_mask=False,
return_depth=False,
interval_comp=opt.geo_threshold / np.mean(can_bones)
)
save_path = os.path.join('./demo', f'canonical_360/{os.path.basename(opt.scene_dir)}', f'out_{str(i).zfill(4)}.png')
if not os.path.isdir(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
imageio.imsave(save_path, out)
print(f'image saved: {save_path}')
def main_posed_360(opt):
scene = neuman_helper.NeuManReader.read_scene(
opt.scene_dir,
tgt_size=opt.render_size,
normalize=opt.normalize,
bkg_range_scale=opt.bkg_range_scale,
human_range_scale=opt.human_range_scale,
smpl_type='optimized'
)
if opt.geo_threshold < 0:
bones = []
for i in range(len(scene.captures)):
bones.append(np.linalg.norm(scene.smpls[i]['joints_3d'][3] - scene.smpls[i]['joints_3d'][0]))
opt.geo_threshold = np.mean(bones)
net = human_nerf.HumanNeRF(opt)
weights = torch.load(opt.weights_path, map_location='cpu')
utils.safe_load_weights(net, weights['hybrid_model_state_dict'])
cap_id = 0
center, up = utils.smpl_verts_to_center_and_up(scene.verts[cap_id])
dist = opt.geo_threshold * 36 # camera distance depends on the human size
render_poses = render_utils.default_360_path(center, up, dist, opt.trajectory_resolution)
for i, rp in enumerate(render_poses):
can_cap = ResizedPinholeCapture(
scene.captures[0].pinhole_cam,
rp,
tgt_size=scene.captures[0].size
)
out = render_utils.render_smpl_nerf(
net,
can_cap,
scene.verts[cap_id],
scene.faces,
scene.Ts[cap_id],
rays_per_batch=opt.rays_per_batch,
samples_per_ray=opt.samples_per_ray,
white_bkg=opt.white_bkg,
render_can=False,
geo_threshold=opt.geo_threshold
)
save_path = os.path.join('./demo', f'posed_360/{os.path.basename(opt.scene_dir)}', f'out_{str(i).zfill(4)}.png')
if not os.path.isdir(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
imageio.imsave(save_path, out)
print(f'image saved: {save_path}')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
options.set_general_option(parser)
opt, _ = parser.parse_known_args()
options.set_nerf_option(parser)
options.set_pe_option(parser)
options.set_render_option(parser)
options.set_trajectory_option(parser)
parser.add_argument('--scene_dir', required=True, type=str, help='scene directory')
parser.add_argument('--image_dir', required=False, type=str, default=None, help='image directory')
parser.add_argument('--out_dir', default='./out', type=str, help='weights dir')
parser.add_argument('--offset_scale', default=1.0, type=float, help='scale the predicted offset')
parser.add_argument('--geo_threshold', default=-1, type=float, help='')
parser.add_argument('--normalize', default=True, type=options.str2bool, help='')
parser.add_argument('--bkg_range_scale', default=3, type=float, help='extend near/far range for background')
parser.add_argument('--human_range_scale', default=1.5, type=float, help='extend near/far range for human')
parser.add_argument('--mode', required=True, choices=['canonical_360', 'posed_360'], type=str, help='rendering mode')
parser.add_argument('--num_offset_nets', default=1, type=int, help='how many offset networks')
parser.add_argument('--offset_scale_type', default='linear', type=str, help='no/linear/tanh')
opt = parser.parse_args()
assert opt.geo_threshold == -1, 'please use auto geo_threshold'
if opt.render_h is None:
opt.render_size = None
else:
opt.render_size = (opt.render_h, opt.render_w)
options.print_opt(opt)
if opt.mode == 'canonical_360':
main_canonical_360(opt)
elif opt.mode == 'posed_360':
main_posed_360(opt)